是否有一种算法可以计算出任意数量级的数字序列的“精确”数字格式?

时间:2019-05-24 16:00:27

标签: algorithm sequence number-formatting axis-labels labeling

我目前正在使用Extended Wilkinson Algorithm的实现来生成一系列轴刻度值。为此,给该算法一个值范围[min,max]和n个所需的刻度标记值,然后它以间隔[min,max]输出一个均匀间隔的值数组。我需要做的是根据这些值创建字符串标签,但要根据这些值的大小顺序在科学计数法和十进制计数法之间进行切换。

例如,对于序列{0.00001,0.000015,0.00002,0.000025},我想使用科学符号{'1.0e-05','1.5e-05','2.0e-05','2.5e- 05'}。 对于序列{0,8,16,24,32},我想将其显示为十进制表示法。 我也不希望不必要的尾随零,如0.001000或1.500e-05,但在上述科学计数示例中,当其他数字需要使用更多小数位时,我希望尾随零。例如'1.00e-05'和'1.05e-05'。但是还要等待更多,例如{20.0000001,20.0000002,20.0000003},有趣的部分当然是每个值的0.0000001很小的偏差,但20仍然很重要,可能需要'20 + 1.0e-07'之类的东西因为计算零是很乏味的。 在标签中混用科学和小数也不会被赞赏,例如{8000,9000,1.0e04,1.1e04}不好。

目标是要有一个一致的标签,使人们可以区分这些值,并且可以很好地读取,以便用科学计数法表示很小或很大的值,以节省显示空间。

因此,用于序列的表示形式不取决于单个值本身,而是必须考虑整个序列。 是否存在与此问题有关的软件包或一些研究论文?

我尝试自己实现一些功能,但是效果不佳,有时会针对不同的数字输出相同的字符串,例如{86.0001,86.00015,86.0002,86.00025}的“ 86.0001”,“ 86.0001”,“ 86.0002”,“ 86.0002”。

protected String[] labelsForTicks(double[] ticks){
   String str1 = String.format(Locale.US, "%.4g", ticks[0]);
   String str2 = String.format(Locale.US, "%.4g", ticks[ticks.length-1]);
   String[] labels = new String[ticks.length];
   if(str1.contains("e") || str2.contains("e")){
      for(int i=0; i<ticks.length; i++){
         String l = String.format(Locale.US, "%.4e", ticks[i]);
         String[] Esplit = l.split("e", -2);
         String[] dotsplit = Esplit[0].split("\\.",-2);
         dotsplit[1] = ('#'+dotsplit[1])
               .replaceAll("0", " ")
               .trim()
               .replaceAll(" ", "0")
               .replaceAll("#", "");
         dotsplit[1] = dotsplit[1].isEmpty() ? "0":dotsplit[1];
         l = dotsplit[0]+'.'+dotsplit[1]+'e'+Esplit[1];
         labels[i] = l;
      }
   } else {
      for(int i=0; i<ticks.length; i++){
         String l = String.format(Locale.US, "%.4f", ticks[i]);
         if(l.contains(".")){
            String[] dotsplit = l.split("\\.",-2);
            dotsplit[1] = ('#'+dotsplit[1])
                  .replaceAll("0", " ")
                  .trim()
                  .replaceAll(" ", "0")
                  .replaceAll("#", "");
            if(dotsplit[1].isEmpty()){
               l = dotsplit[0];
            } else {
               l = dotsplit[0]+'.'+dotsplit[1];
            }
         }
         labels[i] = l;
      }
   }
   return labels;
}

它尝试通过在序列的第一个和最后一个值上使用String format'g'选项决定是使用科学计数法还是十进制表示法,然后尝试去除不必要的零。

1 个答案:

答案 0 :(得分:0)

接收ticks双打时的第一个问题是用最少的数字四舍五入使其与众不同。这就是下面的功能ScaleForTicks的作用。如果找到10的最大幂,则可以将所有ticks缩放为整数,同时保持它们的唯一性。对于ticks >= 0,缩放意味着除以10的幂,对于ticks < 1,意味着乘以10的幂。一旦ticks被缩放为整数,我们将它们四舍五入为0个小数。这为我们提供了基本标签。根据所施加的10的幂,它们仍然需要额外的处理。

问题没有说标签中可以包含多少个连续的0。因此,我在maxZeroDigits函数中添加了LabelsForTicks参数。因此,如果标签包含maxZeroDigits或更少的连续0,则不会以科学计数法显示标签。否则,将使用科学计数法。

另一个难题是问题中的20.0000001 20.0000002 20.0000003中的对勾表示。问题是提取所有标签的公共偏移量以显示实际的小变化1.0e-07 2.0e-07 3.0e-07。通过从缩放后获得的整数标签集中提取该公共偏移量,可以解决此问题。 maxZeroDigits参数用于确定是否以科学计数法格式化偏移量。

该问题要求使用包含可选偏移量,标签和可选指数的完全格式化标签。因为所有标签的偏移量和指数都相同,所以它们可以作为单独的部分返回。这就是下面的LabelsForTicks函数的作用。对于n个刻度,返回数组的前n个元素是没有偏移和指数的格式化标签。返回数组的下两个元素是偏移量的标签和指数。返回数组的最后一个元素是标签的指数。可以将不同的部分组装在一起以获得完全格式化的标签,或者可以分别使用它们,以指示沿着图形轴的标签的乘数(x10^2)或标签的偏移量(+1.34e+04)

这是代码。

static string[] LabelsForTicks(double[] ticks, int maxZeroDigits)
{
    int scale = ScaleForTicks(ticks);

    string[] labels = new string[ticks.Length + 3];

    if (scale >= 0)
    {
        if (scale >= maxZeroDigits + 1)
        {
            for (int i = 0; i < ticks.Length; i++)
                labels[i] = ((long)Math.Round(ticks[i] / Math.Pow(10, scale))).ToString(CultureInfo.InvariantCulture);
        }
        else
        {
            for (int i = 0; i < ticks.Length; i++)
                labels[i] = ((long)ticks[i]).ToString(CultureInfo.InvariantCulture);
        }
    }
    else
    {
        for (int i = 0; i < ticks.Length; i++)
            labels[i] = ((long)Math.Round(ticks[i] * Math.Pow(10, -scale))).ToString(CultureInfo.InvariantCulture);
    }

    // Find common offset.
    char[] mask = labels[0].ToCharArray();
    for (int i = 1; i < ticks.Length; i++)
    {
        for (int j = 0; j < labels[0].Length; j++)
            if (mask[j] != labels[i][j])
                mask[j] = 'x';
    }
    int k = mask.Length - 1;
    while (k >= 0 && mask[k] != 'x') k--;
    for (; k > 0; k--)
    {
        if (!(mask[k] == 'x' || mask[k] != '0'))
        {
            k++;
            break;
        }
    }

    // If there is an offset, and it contains a sequence of more than maxZeroDigits.
    string common = new string(mask, 0, k);
    if (common.Contains(new string('0', maxZeroDigits + 1)))
    {
        // Remove common offset from all labels.
        for (int i = 0; i < ticks.Length; i++)
            labels[i] = labels[i].Substring(k);
        // Add ofsset as the second-to-last label.
        labels[ticks.Length] = common + new string('0', labels[0].Length);
        // Reduce offset.
        string[] offset = LabelForNumber(Convert.ToDouble(labels[ticks.Length]) * Math.Pow(10, scale), maxZeroDigits);
        labels[ticks.Length] = offset[0];
        labels[ticks.Length + 1] = offset[1];
    }

    if (scale < 0)
    {
        int leadingDecimalDigits = (-scale) - labels[0].Length;
        if (leadingDecimalDigits <= maxZeroDigits)
        {
            string zeros = new string('0', leadingDecimalDigits);
            for (int i = 0; i < ticks.Length; i++)
                labels[i] = "0." + zeros + labels[i];
            scale = 0;
        }
        else
        {
            // If only one digit, append "0".
            if (labels[0].Length == 1)
            {
                scale -= 1;
                for (int i = 0; i < ticks.Length; i++)
                    labels[i] = labels[i] + "0";
            }
            // Put decimal point immediately after the first digit.
            scale += labels[0].Length - 1;
            for (int i = 0; i < ticks.Length; i++)
                labels[i] = labels[i][0] + "." + labels[i].Substring(1);
        }
    }
    else if (scale > maxZeroDigits)
    {
        // If only one digit, append "0".
        if (labels[0].Length == 1)
        {
            for (int i = 0; i < ticks.Length; i++)
                labels[i] = labels[i] + "0";
        }
        // Put decimal point immediately after the first digit.
        scale += labels[0].Length - 1;
        for (int i = 0; i < ticks.Length; i++)
            labels[i] = labels[i][0] + "." + labels[i].Substring(1);
    }

    // Add exponent as last labels.
    if (scale < 0 || scale > maxZeroDigits)
    {
        string exponent;
        if (scale < 0)
        {
            exponent = (-scale).ToString();
            if (exponent.Length == 1) exponent = "0" + exponent;
            exponent = "-" + exponent;
        }
        else
        {
            exponent = scale.ToString();
            if (exponent.Length == 1) exponent = "0" + exponent;
            exponent = "+" + exponent;
        }
        labels[ticks.Length + 2] = "e" + exponent;
    }

    return labels;
}

static int ScaleForTicks(double[] ticks)
{
    int scale = -1 + (int)Math.Ceiling(Math.Log10(ticks.Last()));

    int bound = Math.Max(scale - 15, 0);

    while (scale >= bound)
    {
        double t1 = Math.Round(ticks[0] / Math.Pow(10, scale));
        bool success = true;
        for (int i = 1; i < ticks.Length; i++)
        {
            double t2 = Math.Round(ticks[i] / Math.Pow(10, scale));
            if (t1 == t2)
            {
                success = false;
                break;
            }
            t1 = t2;
        }
        if (success)
            return scale;

        scale--;
    }

    bound = Math.Min(-1, scale - 15);

    while (scale >= bound)
    {
        double t1 = Math.Round(ticks[0] * Math.Pow(10, -scale));
        bool success = true;
        for (int i = 1; i < ticks.Length; i++)
        {
            double t2 = Math.Round(ticks[i] * Math.Pow(10, -scale));
            if (t1 == t2)
            {
                success = false;
                break;
            }
            t1 = t2;
        }
        if (success)
            return scale;

        scale--;
    }

    return scale;
}

static string[] LabelForNumber(double number, int maxZeroDigits)
{
    int scale = ScaleNumber(number);

    string[] labels = new string[2];

    if (scale >= 0)
    {
        if (scale >= maxZeroDigits + 1)
            labels[0] = ((long)Math.Round(number / Math.Pow(10, scale))).ToString(CultureInfo.InvariantCulture);
        else
            labels[0] = ((long)number).ToString(CultureInfo.InvariantCulture);
    }
    else
    {
        labels[0] = ((long)Math.Round(number * Math.Pow(10, -scale))).ToString(CultureInfo.InvariantCulture);
    }

    if (scale < 0)
    {
        int leadingDecimalDigits = (-scale) - labels[0].Length;
        if (leadingDecimalDigits <= maxZeroDigits)
        {
            string zeros = new string('0', leadingDecimalDigits);
            labels[0] = "0." + zeros + labels[0].TrimEnd(new char[] { '0' });
            scale = 0;
        }
        else
        {
            // Put decimal point immediately after the first digit.
            scale += labels[0].Length - 1;
            labels[0] = labels[0][0] + "." + labels[0].Substring(1);
            labels[0] = labels[0].TrimEnd(new char[] { '0' });
            // If only one digit, append "0".
            if (labels[0].Length == 2)
                labels[0] = labels[0] + "0";
        }
    }
    else if (scale > maxZeroDigits)
    {
        // Put decimal point immediately after the first digit.
        scale -= labels[0].Length - 1;
        labels[0] = labels[0][0] + "." + labels[0].Substring(1);
        labels[0] = labels[0].TrimEnd(new char[] { '0' });
        // If only one digit, append "0".
        if (labels[0].Length == 2)
            labels[0] = labels[0] + "0";
    }

    // Add exponent as last labels.
    if (scale < 0 || scale > maxZeroDigits)
    {
        string exponent;
        if (scale < 0)
        {
            exponent = (-scale).ToString();
            if (exponent.Length == 1) exponent = "0" + exponent;
            exponent = "-" + exponent;
        }
        else
        {
            exponent = scale.ToString();
            if (exponent.Length == 1) exponent = "0" + exponent;
            exponent = "+" + exponent;
        }
        labels[1] = "e" + exponent;
    }

    return labels;
}

static int ScaleNumber(double number)
{
    int scale = (int)Math.Ceiling(Math.Log10(number));

    int bound = Math.Max(scale - 15, 0);

    while (scale >= bound)
    {
        if (Math.Round(number / Math.Pow(10, scale)) == number / Math.Pow(10, scale))
            return scale;
        scale--;
    }

    bound = Math.Min(-1, scale - 15);

    while (scale >= bound)
    {
        if (Math.Round(number * Math.Pow(10, -scale)) == number * Math.Pow(10, -scale))
            return scale;
        scale--;
    }

    return scale;
}

以下是将maxZeroDigits设置为3和2的几个示例。

Ticks: 1 2 3 4 
MaxZeroDigits: 3
Labels: 1 2 3 4 
Exponent: 
Offset: 

Ticks: 10 11 12 13 
MaxZeroDigits: 3
Labels: 10 11 12 13 
Exponent: 
Offset: 

Ticks: 100 110 120 130 
MaxZeroDigits: 3
Labels: 100 110 120 130 
Exponent: 
Offset: 

Ticks: 1000 1100 1200 1300 
MaxZeroDigits: 3
Labels: 1000 1100 1200 1300 
Exponent: 
Offset: 

Ticks: 10000 11000 12000 13000 
MaxZeroDigits: 3
Labels: 10000 11000 12000 13000 
Exponent: 
Offset: 

Ticks: 100000 110000 120000 130000 
MaxZeroDigits: 3
Labels: 1.0 1.1 1.2 1.3 
Exponent: e+05
Offset: 

Ticks: 1.8E+15 1.9E+15 2E+15 2.1E+15 
MaxZeroDigits: 3
Labels: 1.8 1.9 2.0 2.1 
Exponent: e+15
Offset: 

Ticks: 1.8E+35 1.9E+35 2E+35 2.1E+35 
MaxZeroDigits: 3
Labels: 1.8 1.9 2.0 2.1 
Exponent: e+35
Offset: 

Ticks: 2000.000001 2000.0000015 2000.000002 2000.0000025 
MaxZeroDigits: 3
Labels: 1.0 1.5 2.0 2.5 
Exponent: e-06
Offset: 2000

Ticks: 20000.00000105 20000.0000011 20000.00000115 20000.0000012 
MaxZeroDigits: 3
Labels: 1.05 1.10 1.15 1.20 
Exponent: e-06
Offset: 2.0e+04

Ticks: 2.000001 2.000002 2.000003 2.000004 
MaxZeroDigits: 3
Labels: 1.0 2.0 3.0 4.0 
Exponent: e-06
Offset: 2

Ticks: 20.000001 20.000002 20.000003 20.000004 
MaxZeroDigits: 3
Labels: 1.0 2.0 3.0 4.0 
Exponent: e-06
Offset: 20

Ticks: 200.000001 200.0000015 200.000002 200.0000025 
MaxZeroDigits: 3
Labels: 1.0 1.5 2.0 2.5 
Exponent: e-06
Offset: 200

Ticks: 200000.000001 200000.000002 200000.000003 200000.000004 
MaxZeroDigits: 3
Labels: 1.0 2.0 3.0 4.0 
Exponent: e-06
Offset: 2.0e+05

Ticks: 2.0000001E+35 2.0000002E+35 2.0000003E+35 2.0000004E+35 
MaxZeroDigits: 3
Labels: 1.0 2.0 3.0 4.0 
Exponent: e+29
Offset: 2.0e+35

Ticks: 0.1 0.15 0.2 0.25 
MaxZeroDigits: 3
Labels: 0.10 0.15 0.20 0.25 
Exponent: 
Offset: 

Ticks: 0.01 0.015 0.02 0.025 
MaxZeroDigits: 3
Labels: 0.010 0.015 0.020 0.025 
Exponent: 
Offset: 

Ticks: 0.001 0.0015 0.002 0.0025 
MaxZeroDigits: 3
Labels: 0.0010 0.0015 0.0020 0.0025 
Exponent: 
Offset: 

Ticks: 0.0001 0.00015 0.0002 0.00025 
MaxZeroDigits: 3
Labels: 0.00010 0.00015 0.00020 0.00025 
Exponent: 
Offset: 

Ticks: 1E-05 1.5E-05 2E-05 2.5E-05 
MaxZeroDigits: 3
Labels: 1.0 1.5 2.0 2.5 
Exponent: e-05
Offset: 

Ticks: 1E-06 1.5E-06 2E-06 2.5E-06 
MaxZeroDigits: 3
Labels: 1.0 1.5 2.0 2.5 
Exponent: e-06
Offset: 

Ticks: 1.8E-13 1.9E-13 2E-13 2.1E-13 
MaxZeroDigits: 3
Labels: 1.8 1.9 2.0 2.1 
Exponent: e-13
Offset: 

Ticks: 1.8E-33 1.9E-33 2E-33 2.1E-33 
MaxZeroDigits: 3
Labels: 1.8 1.9 2.0 2.1 
Exponent: e-33
Offset: 

Ticks: 2.0000001E-33 2.0000002E-33 2.0000003E-33 2.0000004E-33 
MaxZeroDigits: 3
Labels: 1.0 2.0 3.0 4.0 
Exponent: e-40
Offset: 2.0e-33

Ticks: 2.00000000015E-30 2.0000000002E-30 2.00000000025E-30 2.0000000003E-30 
MaxZeroDigits: 3
Labels: 1.5 2.0 2.5 3.0 
Exponent: e-40
Offset: 2.0e-30

Ticks: 0.0010000010001 0.0010000010002 0.0010000010003 0.0010000010004 
MaxZeroDigits: 3
Labels: 1.0 2.0 3.0 4.0 
Exponent: e-13
Offset: 0.001000001

Ticks: 0.0010000010001 0.00100000100015 0.0010000010002 0.00100000100025 
MaxZeroDigits: 3
Labels: 1.0 1.5 2.0 2.5 
Exponent: e-13
Offset: 0.001000001

Ticks: 1000001000.1 1000001000.2 1000001000.3 1000001000.4 
MaxZeroDigits: 3
Labels: 0.1 0.2 0.3 0.4 
Exponent: 
Offset: 1000001000

Ticks: 1 2 3 4 
MaxZeroDigits: 2
Labels: 1 2 3 4 
Exponent: 
Offset: 

Ticks: 10 11 12 13 
MaxZeroDigits: 2
Labels: 10 11 12 13 
Exponent: 
Offset: 

Ticks: 100 110 120 130 
MaxZeroDigits: 2
Labels: 100 110 120 130 
Exponent: 
Offset: 

Ticks: 1000 1100 1200 1300 
MaxZeroDigits: 2
Labels: 1000 1100 1200 1300 
Exponent: 
Offset: 

Ticks: 10000 11000 12000 13000 
MaxZeroDigits: 2
Labels: 1.0 1.1 1.2 1.3 
Exponent: e+04
Offset: 

Ticks: 100000 110000 120000 130000 
MaxZeroDigits: 2
Labels: 1.0 1.1 1.2 1.3 
Exponent: e+05
Offset: 

Ticks: 1.8E+15 1.9E+15 2E+15 2.1E+15 
MaxZeroDigits: 2
Labels: 1.8 1.9 2.0 2.1 
Exponent: e+15
Offset: 

Ticks: 1.8E+35 1.9E+35 2E+35 2.1E+35 
MaxZeroDigits: 2
Labels: 1.8 1.9 2.0 2.1 
Exponent: e+35
Offset: 

Ticks: 2000.000001 2000.0000015 2000.000002 2000.0000025 
MaxZeroDigits: 2
Labels: 1.0 1.5 2.0 2.5 
Exponent: e-06
Offset: 2.0e+03

Ticks: 20000.00000105 20000.0000011 20000.00000115 20000.0000012 
MaxZeroDigits: 2
Labels: 1.05 1.10 1.15 1.20 
Exponent: e-06
Offset: 2.0e+04

Ticks: 2.000001 2.000002 2.000003 2.000004 
MaxZeroDigits: 2
Labels: 1.0 2.0 3.0 4.0 
Exponent: e-06
Offset: 2

Ticks: 20.000001 20.000002 20.000003 20.000004 
MaxZeroDigits: 2
Labels: 1.0 2.0 3.0 4.0 
Exponent: e-06
Offset: 20

Ticks: 200.000001 200.0000015 200.000002 200.0000025 
MaxZeroDigits: 2
Labels: 1.0 1.5 2.0 2.5 
Exponent: e-06
Offset: 200

Ticks: 200000.000001 200000.000002 200000.000003 200000.000004 
MaxZeroDigits: 2
Labels: 1.0 2.0 3.0 4.0 
Exponent: e-06
Offset: 2.0e+05

Ticks: 2.0000001E+35 2.0000002E+35 2.0000003E+35 2.0000004E+35 
MaxZeroDigits: 2
Labels: 1.0 2.0 3.0 4.0 
Exponent: e+29
Offset: 2.0e+35

Ticks: 0.1 0.15 0.2 0.25 
MaxZeroDigits: 2
Labels: 0.10 0.15 0.20 0.25 
Exponent: 
Offset: 

Ticks: 0.01 0.015 0.02 0.025 
MaxZeroDigits: 2
Labels: 0.010 0.015 0.020 0.025 
Exponent: 
Offset: 

Ticks: 0.001 0.0015 0.002 0.0025 
MaxZeroDigits: 2
Labels: 0.0010 0.0015 0.0020 0.0025 
Exponent: 
Offset: 

Ticks: 0.0001 0.00015 0.0002 0.00025 
MaxZeroDigits: 2
Labels: 1.0 1.5 2.0 2.5 
Exponent: e-04
Offset: 

Ticks: 1E-05 1.5E-05 2E-05 2.5E-05 
MaxZeroDigits: 2
Labels: 1.0 1.5 2.0 2.5 
Exponent: e-05
Offset: 

Ticks: 1E-06 1.5E-06 2E-06 2.5E-06 
MaxZeroDigits: 2
Labels: 1.0 1.5 2.0 2.5 
Exponent: e-06
Offset: 

Ticks: 1.8E-13 1.9E-13 2E-13 2.1E-13 
MaxZeroDigits: 2
Labels: 1.8 1.9 2.0 2.1 
Exponent: e-13
Offset: 

Ticks: 1.8E-33 1.9E-33 2E-33 2.1E-33 
MaxZeroDigits: 2
Labels: 1.8 1.9 2.0 2.1 
Exponent: e-33
Offset: 

Ticks: 2.0000001E-33 2.0000002E-33 2.0000003E-33 2.0000004E-33 
MaxZeroDigits: 2
Labels: 1.0 2.0 3.0 4.0 
Exponent: e-40
Offset: 2.0e-33

Ticks: 2.00000000015E-30 2.0000000002E-30 2.00000000025E-30 2.0000000003E-30 
MaxZeroDigits: 2
Labels: 1.5 2.0 2.5 3.0 
Exponent: e-40
Offset: 2.0e-30

Ticks: 0.0010000010001 0.0010000010002 0.0010000010003 0.0010000010004 
MaxZeroDigits: 2
Labels: 1.0 2.0 3.0 4.0 
Exponent: e-13
Offset: 0.001000001

Ticks: 0.0010000010001 0.00100000100015 0.0010000010002 0.00100000100025 
MaxZeroDigits: 2
Labels: 1.0 1.5 2.0 2.5 
Exponent: e-13
Offset: 0.001000001

Ticks: 1000001000.1 1000001000.2 1000001000.3 1000001000.4 
MaxZeroDigits: 2
Labels: 0.1 0.2 0.3 0.4 
Exponent: 
Offset: 1.000001e-03