从轮廓返回Z值时发生ValueError

时间:2019-05-19 12:25:25

标签: python matplotlib scipy interpolation spline

我正在尝试返回轮廓的z-value。我想用来返回z-value的特定点是从['C1_X'],['C1_Y']中的df调用的。当这些坐标按升序排列时,代码可以工作,但是当降序排列时,它将引发错误。

错误:

raise ValueError("Error code returned by bispev: %s" % ier)
ValueError: Error code returned by bispev: 10

用于返回z值的代码为:

    # Return z-value for C coordinate
    f = RectBivariateSpline(X[0, :], Y[:, 0], normPDF.T)
    z = f(d['C1_X'], d['C1_Y']) 
    print(z)

使用@Prasanth的建议。是否可以逐帧通过f?因此,传递第一帧,清除或清空输入,然后传递第二帧,等等。

这样的作品行吗?

f = RectBivariateSpline(X[0, :], Y[:, 0], normPDF.T)
z = f(d1['C1_X'], d1['C1_Y']) 
z = np.empty(f(d1['C1_X'], d1['C1_Y']))
z = zip(d['C1_X'], d['C1_Y'])
print(z)

下面是整个代码:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import scipy.stats as sts
import matplotlib.animation as animation
from scipy.interpolate import RectBivariateSpline

DATA_LIMITS = [0, 20]

def datalimits(*data):
    return DATA_LIMITS  

def mvpdf(x, y, xlim, ylim, radius=1, velocity=0, scale=0, theta=0):
    X,Y = np.meshgrid(np.linspace(*xlim), np.linspace(*ylim))
    XY = np.stack([X, Y], 2)
    x,y = (x, y)
    PDF = sts.multivariate_normal([x, y]).pdf(XY)
    return X, Y, PDF

def mvpdfs(xs, ys, xlim, ylim, radius=None, velocity=None, scale=None, theta=None):
    PDFs = []
    for i,(x,y) in enumerate(zip(xs,ys)):
        kwargs = {
            'xlim': xlim,
            'ylim': ylim
        }
        X, Y, PDF = mvpdf(x, y,**kwargs)
        PDFs.append(PDF)

    return X, Y, np.sum(PDFs, axis=0)

fig, ax = plt.subplots(figsize = (10,4))

ax.set_xlim(DATA_LIMITS)
ax.set_ylim(DATA_LIMITS)

line_a, = ax.plot([], [], '.', c='red', alpha = 0.5, markersize=5, animated=True)
line_b, = ax.plot([], [], '.', c='blue', alpha = 0.5, markersize=5, animated=True)
lines=[line_a,line_b] 

scat = ax.scatter([], [], s=20, marker='o', c='white', alpha = 1,zorder=3)
scats=[scat] 

cfs = None

def plotmvs(tdf, xlim=None, ylim=None, fig=fig, ax=ax):
    global cfs  
    if cfs:
        for tp in cfs.collections:
            tp.remove()

    df = tdf[1]

    if xlim is None: xlim = datalimits(df['X'])
    if ylim is None: ylim = datalimits(df['Y'])

    PDFs = []

    for (group, gdf), group_line in zip(df.groupby('group'), lines+scats):
        if group in ['A','B']:
            group_line.set_data(*gdf[['X','Y']].values.T)
            kwargs = {
            'xlim': xlim,
            'ylim': ylim
            }
            X, Y, PDF = mvpdfs(gdf['X'].values, gdf['Y'].values, **kwargs)
            PDFs.append(PDF)
        elif group in ['C']:
            gdf['X'].values, gdf['Y'].values
            scat.set_offsets(gdf[['X','Y']].values)

    normPDF = (PDFs[0]-PDFs[1])/max(PDFs[0].max(),PDFs[1].max())

    f = RectBivariateSpline(X[0, :], Y[:, 0], normPDF.T)
    z = f(d['C1_X'], d['C1_Y']) 
    print(z)

    cfs = ax.contourf(X, Y, normPDF, cmap = 'jet', alpha = 1, levels=np.linspace(-1,1,10),zorder=1)

    return  cfs.collections + [scat] + [line_a,line_b] 

n = 9
time = range(n)  

d = ({
     'A1_X' :    [13,14,12,13,11,12,13,12,11,10],
     'A1_Y' :    [6,6,7,7,7,8,8,8,9,10],
     'A2_X' :    [7,6,5,7,6,3,4,5,6,6],
     'A2_Y' :    [11,12,11,10,11,12,10,11,10,9],
     'B1_X' :    [8,9,8,7,6,7,5,6,7,6],
     'B1_Y' :    [3,4,3,2,3,4,2,1,2,3],
     'B2_X' :    [13,14,14,14,13,13,13,12,12,12],
     'B2_Y' :    [5,4,3,2,4,5,4,6,3,3],
     'C1_X' :   [8,9,9,10,11,12,12,13,14,14],
     'C1_Y' :   [3,3,5,5,6,8,9,10,11,11],                
     })

tuples = [((t, k.split('_')[0][0], int(k.split('_')[0][1:]), k.split('_')[1]), v[i])
     for k,v in d.items() for i,t in enumerate(time) ]

df = pd.Series(dict(tuples)).unstack(-1)
df.index.names = ['time', 'group', 'id']

interval_ms = 1000
delay_ms = 2000
ani = animation.FuncAnimation(fig, plotmvs, frames=df.groupby('time'), interval=interval_ms, repeat_delay=delay_ms,)

plt.show()

1 个答案:

答案 0 :(得分:2)

错误代码10表示输入无效(Google搜索!)。

创建玩具数据。您的代码正在做很多事情,我想隔离导致错误的部分。

X,Y = np.meshgrid(np.linspace(0, 20), np.linspace(0, 20))

创建一个可调用的值以在输入值处进行插值。

from scipy.interpolate import RectBivariateSpline
f = RectBivariateSpline(X[0, :], Y[:, 0], z = X**2+Y**2)

尝试运行代码。

f([10,10,10,10,10,10,10,10,10,10], [10,10,10,10,10,10,10,10,10,9])

截断的输出

---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-84-73aaa29ad73f> in <module>
----> 1 f([10,10,10,10,10,10,10,10,10,10], [10,10,10,10,10,10,10,10,10,9])

检查f的文档字符串以查看是否有某些信息。我正在Jupyter笔记本中进行此操作。

f?

截断的输出

Signature:      f(x, y, dx=0, dy=0, grid=True)
Type:           RectBivariateSpline
String form:    <scipy.interpolate.fitpack2.RectBivariateSpline object at 0x7f5a4a7f9cc0>
File:           ~/bin/anaconda3/envs/py37a/lib/python3.7/site-packages/scipy/interpolate/fitpack2.py
Docstring:     
Bivariate spline approximation over a rectangular mesh.

Can be used for both smoothing and interpolating data.

Parameters
----------
x,y : array_like
    1-D arrays of coordinates in strictly ascending order.
...
...
...

哦。它希望也以严格升序的方式对这些点进行评估。那么订购要评估的积分会起作用吗?

f([10,10,10,10,10,10,10,10,10,10], [9, 10,10,10,10,10,10,10,10,10])

输出

array([[181., 200., 200., 200., 200., 200., 200., 200., 200., 200.],
       [181., 200., 200., 200., 200., 200., 200., 200., 200., 200.],
       [181., 200., 200., 200., 200., 200., 200., 200., 200., 200.],
       [181., 200., 200., 200., 200., 200., 200., 200., 200., 200.],
       [181., 200., 200., 200., 200., 200., 200., 200., 200., 200.],
       [181., 200., 200., 200., 200., 200., 200., 200., 200., 200.],
       [181., 200., 200., 200., 200., 200., 200., 200., 200., 200.],
       [181., 200., 200., 200., 200., 200., 200., 200., 200., 200.],
       [181., 200., 200., 200., 200., 200., 200., 200., 200., 200.],
       [181., 200., 200., 200., 200., 200., 200., 200., 200., 200.]])

在代码工作中调用插值函数工作之前,将对要执行插值的点进行排序吗?

希望这会有所帮助。


编辑

这是我的意思:

f = RectBivariateSpline(X[0, :], Y[:, 0], normPDF.T)
# z = f(d['C1_X'], d['C1_Y'])
x_ip = d['C1_X']
y_ip = d['C1_Y']
z = np.empty((len(x_ip), len(y_ip)), dtype=np.float64)
for i, x in enumerate(x_ip):
    z[i, :] = f([x], y_ip) # ASSUME THAT y_ip IS SORTED.
print(z)

通过此更改,我的计算机上运行了您的代码:它显示了一些轮廓动画。将此思想适应于x和y不能都按升序排列的其他情况。您可以循环遍历x和y,但这会增加函数调用的次数。