我正在尝试创建一个Tensorflow量化模型,以使用Coral USB Accelerator进行推理。这是我的问题的一个最小的独立示例:
import sys
import tensorflow as tf
CKPT = "a/out.ckpt"
TFLITE = "a/out.tflite"
args = sys.argv[1:]
if 0 == len(args):
print("Options are 'train' or 'save'")
exit(-1)
cmd = args[0]
if cmd not in ["train", "save"]:
print("Options are 'train' or 'save'")
exit(-1)
tr_in = [[1.0, 0.0], [0.0, 1.0], [0.0, 0.0], [1.0, 1.0]]
tr_out = [[1.0], [1.0], [0.0], [0.0]]
nn_in = tf.placeholder(tf.float32, (None, 2), name="input")
W = tf.Variable(tf.random_normal([2, 1], stddev=0.1))
B = tf.Variable(tf.ones([1]))
nn_out = tf.nn.relu6(tf.matmul(nn_in, W) + B, name="output")
if "train" == cmd:
tf.contrib.quantize.create_training_graph(quant_delay=0)
nn_act = tf.placeholder(tf.float32, (None, 1), name="actual")
diff = tf.reduce_mean(tf.pow(nn_act - nn_out, 2))
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
optimizer = tf.train.AdamOptimizer(
learning_rate=0.0001,
)
goal = optimizer.minimize(diff)
else:
tf.contrib.quantize.create_eval_graph()
init = tf.global_variables_initializer()
with tf.Session() as session:
session.run(init)
saver = tf.train.Saver()
try:
saver.restore(session, CKPT)
except BaseException as e:
print("While trying to restore: {}".format(str(e)))
if "train" == cmd:
for epoch in range(2):
_, d = session.run([goal, diff], feed_dict={
nn_in: tr_in,
nn_act: tr_out,
})
print("Loss: {}".format(d))
saver.save(session, CKPT)
elif "save" == cmd:
converter = tf.lite.TFLiteConverter.from_session(
session, [nn_in], [nn_out],
)
converter.inference_type = tf.lite.constants.QUANTIZED_UINT8
input_arrays = converter.get_input_arrays()
converter.quantized_input_stats = {input_arrays[0] : (0.0, 1.0)}
tflite_model = converter.convert()
with open(TFLITE, "wb") as f:
f.write(tflite_model)
假设您有一个名为“ a”的目录,则可以使用以下目录运行该文件:
python example.py train
python example.py save
“火车”步骤应该可以正常工作,但是当尝试导出量化的tflite文件时,我得到以下信息:
...
2019-05-14 14:03:44.032912: F tensorflow/lite/toco/graph_transformations/quantize.cc:144] Array output does not have MinMax information, and is not a constant array. Cannot proceed with quantization.
Aborted
我的目标是成功运行“保存”步骤并得到训练有素的量化模型。我想念什么?
答案 0 :(得分:0)
TFLiteConverter中有一个棘手的错误:
如果您构建的分类网络通常以softmax层结尾(不需要MinMax信息),则不会出现该错误。但是对于回归网络,这是一个问题。我使用以下解决方法。
在调用 create_eval_graph 函数之前,在输出层之后添加其他(实际上无意义的)操作,如下所示:
nn_out = tf.minimum(nn_out, 1e6)
您可以使用任何任意数字(用于第二个参数),该数字要比预期的输出层值上限大得多。就我而言,它非常有效。