我正在将着色器作为纹理应用于等轴测场景中的平面。平面以x,z尺寸平放。我在获取着色器图案以使其与场景中的等轴测透视图匹配时遇到麻烦。
这是一个示例,其中着色器通过以统一的方向传入来随平面旋转(如常规纹理)。
这是着色器纹理的“ 2d”(正射)投影:
var TWO_PI = Math.PI * 2;
var PI = Math.PI;
var width = window.innerHeight - 50;
var height = window.innerHeight - 50;
var aspect = width / height;
var planeSize = width * 0.75;
var clock = new THREE.Clock();
var camera, scene, renderer;
var plane, geom_plane, mat_plane;
function init() {
// ---------- scene
scene = new THREE.Scene();
// ---------- plane
var plane_w = planeSize;
var plane_h = planeSize;
var geom_plane = new THREE.PlaneGeometry(plane_w,
plane_h,
0);
var mat_plane = new THREE.MeshBasicMaterial({
color: 0xffff00,
side: THREE.DoubleSide
});
var shaderMaterial_plane = new THREE.ShaderMaterial({
uniforms: {
u_resolution: {
value: new THREE.Vector2(planeSize, planeSize)
},
u_rotation_x: {
value: performance.now() * 0.001
},
u_rotation_y: {
value: performance.now() * 0.001
}
},
vertexShader: document.getElementById('vertexshader').textContent,
fragmentShader: document.getElementById('fragmentshader').textContent,
blending: THREE.NormalBlending,
depthTest: true,
transparent: true
});
plane = new THREE.Mesh(geom_plane, shaderMaterial_plane);
scene.add(plane);
// ---------- cam
camera = new THREE.OrthographicCamera(width / -2, width / 2, height / 2, height / -2, 1, 5000);
camera.position.set(0, 0, planeSize);
camera.lookAt(scene.position);
// ---------- renderer
renderer = new THREE.WebGLRenderer({
antialias: false,
alpha: true
});
renderer.setSize(width, height);
renderer.setClearColor(0x000000);
document.body.appendChild(renderer.domElement);
}
function animate() {
requestAnimationFrame(animate);
var time = performance.now() * 0.001;
plane.material.uniforms.u_rotation_x.value = Math.sin(time * 0.2);
plane.material.uniforms.u_rotation_y.value = Math.cos(time * 0.2);
var delta = clock.getDelta();
render();
}
function render() {
renderer.render(scene, camera);
}
init();
animate();
<script type="x-shader/x-vertex" id="vertexshader">
varying vec2 vUv;
void main() {
vUv = uv;
gl_Position = projectionMatrix * modelViewMatrix * vec4(position, 1.0);
}
</script>
<script type="x-shader/x-fragment" id="fragmentshader">
uniform vec2 u_resolution; // Canvas size (width,height)
uniform float u_rotation_x;
uniform float u_rotation_y;
mat2 rotate2d(vec2 _angles){
return mat2(_angles.x,
-_angles.x,
_angles.y,
_angles.y);
}
float map(float value, float min1, float max1, float min2, float max2) {
return min2 + (value - min1) * (max2 - min2) / (max1 - min1);
}
void main() {
vec2 st = gl_FragCoord.xy/u_resolution.xy;
vec3 color = vec3(1.0,1.0,1.0);
float gradientLength = 0.2;
float t = 18.;
// move matrix in order to set rotation pivot point to center
st -= vec2(0.5);
// rotate
vec2 u_rotation = vec2(u_rotation_x, u_rotation_y);
st = rotate2d(u_rotation) * st;
// move matrix back
st += vec2(0.5);
// apply gradient pattern
vec2 p = vec2(floor(gl_FragCoord.x), floor(gl_FragCoord.y));
float pp = clamp(gl_FragCoord.y,-0.5,st.y);
float val = mod((pp + t), gradientLength);
float alpha = map(val, 0.0, gradientLength, 1.0, 0.0);
gl_FragColor = vec4(color,alpha);
}
</script>
<div id="threejs_canvas"></div>
<script src="https://threejs.org/build/three.min.js"></script>
这是在等距空间中的平面上(具有相同的旋转):
var TWO_PI = Math.PI * 2;
var PI = Math.PI;
var width = window.innerHeight - 50;
var height = window.innerHeight - 50;
var aspect = width / height;
var canvasCubeSize = width;
var clock = new THREE.Clock();
var camera, scene, renderer;
var wire_cube;
var plane, geom_plane, mat_plane;
function init() {
// ---------- scene
scene = new THREE.Scene();
// ---------- wire cube
var wire_geometry = new THREE.BoxGeometry(canvasCubeSize / 2, canvasCubeSize / 2, canvasCubeSize / 2);
var wire_material = new THREE.MeshBasicMaterial({
wireframe: true,
color: 0xff0000
});
wire_cube = new THREE.Mesh(wire_geometry, wire_material);
scene.add(wire_cube);
// ---------- plane
var plane_w = canvasCubeSize / 2;
var plane_h = plane_w;
var geom_plane = new THREE.PlaneGeometry(plane_w,
plane_h,
0);
var mat_plane = new THREE.MeshBasicMaterial({
color: 0xffff00,
side: THREE.DoubleSide
});
var shaderMaterial_plane = new THREE.ShaderMaterial({
uniforms: {
u_time: {
value: 1.0
},
u_resolution: {
value: new THREE.Vector2(canvasCubeSize, canvasCubeSize)
},
u_rotation_x: {
value: wire_cube.rotation.y
},
u_rotation_y: {
value: wire_cube.rotation.y
}
},
vertexShader: document.getElementById('vertexshader').textContent,
fragmentShader: document.getElementById('fragmentshader').textContent,
blending: THREE.NormalBlending,
depthTest: true,
transparent: true
});
plane = new THREE.Mesh(geom_plane, shaderMaterial_plane);
plane.rotation.x = -PI / 2;
wire_cube.add(plane);
// ---------- cam
camera = new THREE.OrthographicCamera(width / -2, width / 2, height / 2, height / -2, 1, 5000);
camera.position.set(canvasCubeSize, canvasCubeSize, canvasCubeSize);
camera.lookAt(scene.position);
// ---------- renderer
renderer = new THREE.WebGLRenderer({
antialias: false,
alpha: true
});
renderer.setSize(width, height);
renderer.setClearColor(0x000000);
document.body.appendChild(renderer.domElement);
}
function animate() {
requestAnimationFrame(animate);
var time = performance.now() * 0.001;
wire_cube.rotation.y = time * 0.2;
if (wire_cube.rotation.y >= TWO_PI) {
wire_cube.rotation.y -= TWO_PI;
}
plane.material.uniforms.u_time.value = time * 0.005;
plane.material.uniforms.u_rotation_x.value = Math.sin(wire_cube.rotation.y);
plane.material.uniforms.u_rotation_y.value = Math.cos(wire_cube.rotation.y);
var delta = clock.getDelta();
render();
}
function render() {
renderer.render(scene, camera);
}
init();
animate();
<script type="x-shader/x-vertex" id="vertexshader">
varying vec2 vUv;
void main() {
vUv = uv;
gl_Position = projectionMatrix * modelViewMatrix * vec4(position, 1.0);
}
</script>
<script type="x-shader/x-fragment" id="fragmentshader">
uniform vec2 u_resolution; // Canvas size (width,height)
uniform float u_rotation_x;
uniform float u_rotation_y;
mat2 rotate2d(vec2 _angles){
return mat2(_angles.x,
-_angles.x,
_angles.y,
_angles.y);
}
float map(float value, float min1, float max1, float min2, float max2) {
return min2 + (value - min1) * (max2 - min2) / (max1 - min1);
}
void main() {
vec2 st = gl_FragCoord.xy/u_resolution.xy;
vec3 color = vec3(1.0,1.0,1.0);
float gradientLength = 0.2;
float t = 18.;
// move matrix in order to set rotation pivot point to center
st -= vec2(0.5);
// rotate
vec2 u_rotation = vec2(u_rotation_x, u_rotation_y);
st = rotate2d(u_rotation) * st;
// move matrix back
st += vec2(0.5);
// apply gradient pattern
vec2 p = vec2(floor(gl_FragCoord.x), floor(gl_FragCoord.y));
float pp = clamp(gl_FragCoord.y,-0.5,st.y);
float val = mod((pp + t), gradientLength);
float alpha = map(val, 0.0, gradientLength, 1.0, 0.0);
gl_FragColor = vec4(color,alpha);
}
</script>
<div id="threejs_canvas">
</div>
<script src="https://threejs.org/build/three.min.js"></script>
if snippet output is too small see here
该旋转说明了着色器如何不模仿等轴测透视图。请注意,着色器图案在旋转时如何相对于平面角不保持固定。
这是片段着色器:
uniform vec2 u_resolution; // canvas size (width,height)
uniform float u_rotation_x;
uniform float u_rotation_y;
mat2 rotate2d(vec2 _angles){
return mat2(_angles.x,
-_angles.x,
_angles.y,
_angles.y);
}
float map(float value, float min1, float max1, float min2, float max2) {
return min2 + (value - min1) * (max2 - min2) / (max1 - min1);
}
void main() {
vec2 st = gl_FragCoord.xy/u_resolution.xy;
vec3 color = vec3(1.0,1.0,1.0);
float gradientLength = 0.2;
float t = 18.;
// move matrix in order to set rotation pivot point to center
st -= vec2(0.5);
// rotate
vec2 u_rotation = vec2(u_rotation_x, u_rotation_y);
st = rotate2d(u_rotation) * st;
// move matrix back
st += vec2(0.5);
// apply gradient pattern
vec2 p = vec2(floor(gl_FragCoord.x), floor(gl_FragCoord.y));
float pp = clamp(gl_FragCoord.y,-0.5,st.y);
float val = mod((pp + t), gradientLength);
float alpha = map(val, 0.0, gradientLength, 1.0, 0.0);
gl_FragColor = vec4(color,alpha);
}
有人可以帮助我了解如何在着色器中“扭曲”矩阵,以便在旋转时模拟在等距空间中平面的旋转吗?
编辑:我想知道是否应将矩阵变形和精确旋转应用于两个独立的问题?我正在尝试将转速从0更改为TWO_PI方向,但这也许是此示例特有的解决方案...
答案 0 :(得分:1)
非常有趣的问题(为此+1)。如何将单位圆转换为椭圆并使用其中包含的90度偏移基向量?
此处忽略矩阵数学 GL / GLSL / C ++ 示例:
CPU侧图:
// GLSL Isometric view
float pan[2]={0.5,0.5};
float u[2]={1.0,0.0};
float v[2]={0.5,0.5};
const float deg=M_PI/180.0;
const float da=1.0*deg;;
static float a=0.0;
u[0]=1.0*cos(a);
u[1]=0.5*sin(a);
v[0]=1.0*cos(a+90.0*deg);
v[1]=0.5*sin(a+90.0*deg);
a+=da; if (a>=2.0*M_PI) a-=2.0*M_PI;
glUseProgram(prog_id);
id=glGetUniformLocation(prog_id,"zoom"); glUniform1f(id,0.5);
id=glGetUniformLocation(prog_id,"pan"); glUniform2fv(id,1,pan);
id=glGetUniformLocation(prog_id,"u"); glUniform2fv(id,1,u);
id=glGetUniformLocation(prog_id,"v"); glUniform2fv(id,1,v);
glBegin(GL_QUADS);
glColor3f(1,1,1);
float x=0.0,y=0.0;
glVertex2f(x+0.0,y+0.0);
glVertex2f(x+0.0,y+1.0);
glVertex2f(x+1.0,y+1.0);
glVertex2f(x+1.0,y+0.0);
glEnd();
glUseProgram(0);
顶点:
#version 120
// Vertex
uniform vec2 pan=vec2(0.5,0.5); // origin [grid cells]
uniform float zoom=0.5; // scale
uniform vec2 u=vec2(1.0,0.0); // basis vectors
uniform vec2 v=vec2(0.5,0.5);
varying vec2 pos; // position [grid cells]
void main()
{
pos=gl_Vertex.xy;
vec2 a=zoom*(gl_Vertex.xy-pan);
gl_Position=vec4((u*a.x)+(v*a.y),0.0,1.0);
}
片段:
#version 120
// Fragment
varying vec2 pos; // texture coordinate
void main()
{
float a;
a=2.0*(pos.x+pos.y);
a-=floor(a);
gl_FragColor=vec4(a,a,a,1.0);
}
最后预览:
重要的东西在顶点着色器中。因此,只需使用u,v
基向量就可以通过以下公式将世界 2D转换为 Isometric 2D位置:
isometric = world.x*u + world.y*v
其余只是pan
和zoom
...
答案 1 :(得分:0)
该解决方案非常简单。我发现我的问题是一个dupe,原文中包含一个说明解决方案的示例(也在下面说明)。
在我的原始代码中,我使用vec2 st = gl_FragCoord.xy/u_resolution.xy;
获取像素xy位置,这是全局窗口位置。要在碎片着色器中获得相对的uv位置,需要将uv曲面的宽度和高度传递到顶点着色器中,以便使用threejs predefined vec3 position
获得标准化的像素位置:
uniform float width;
uniform float height;
varying float x;
varying float y;
void main() {
// Get normalized position
x = position.x / width;
y = position.y / height;
gl_Position = projectionMatrix * modelViewMatrix * vec4(position, 1.0);
}
然后可以在碎片着色器中使用它们:
varying float x; // -0.5 to 0.5
varying float y; // -0.5 to 0.5
void main() {
gl_FragColor = vec4(x, y, 0.0, 1.0);
}