Levenshtein在T-SQL中的距离

时间:2009-02-18 11:38:09

标签: tsql edit-distance levenshtein-distance

我对计算Levenshtein距离的T-SQL算法很感兴趣。

7 个答案:

答案 0 :(得分:72)

我在TSQL中实现了标准的Levenshtein编辑距离函数,并进行了几项优化,提高了我所知道的其他版本的速度。如果两个字符串在它们的开始处具有共同的字符(共享前缀),在它们的末尾共有字符(共享后缀),并且当字符串很大并且提供最大编辑距离时,速度的提高是显着的。例如,当输入是两个非常相似的4000个字符串,并且指定了最大编辑距离2时,这几乎比接受的答案中的edit_distance_within函数快三个数量级,将答案返回到0.073秒(73毫秒)vs 55秒。它还具有内存效率,使用的空间等于两个输入字符串中较大的一个加上一些常量空间。它使用单个nvarchar"数组"表示一个列,并在其中进行所有计算,加上一些辅助int变量。

优化:

  • 跳过共享前缀和/或后缀的处理
  • 如果较大的字符串以整个较小的字符串开头或结尾,则提前返回
  • 如果尺寸差异确保超出最大距离,则提前退货
  • 仅使用表示矩阵中列的单个数组(实现为nvarchar)
  • 当给出最大距离时,时间复杂度从(len1 * len2)变为(min(len1,len2))即线性
  • 当给出最大距离时,一旦知道最大距离限制就提前返回

在TSQL中Levenshtein的my blog post中更详细地描述了优化,并在那里与另一个具有类似Damerau-Levenshtein实现的帖子相关联。但是这里是代码(2014年1月20日更新,以加快它的速度):

-- =============================================
-- Computes and returns the Levenshtein edit distance between two strings, i.e. the
-- number of insertion, deletion, and sustitution edits required to transform one
-- string to the other, or NULL if @max is exceeded. Comparisons use the case-
-- sensitivity configured in SQL Server (case-insensitive by default).
-- http://blog.softwx.net/2014/12/optimizing-levenshtein-algorithm-in-tsql.html
-- 
-- Based on Sten Hjelmqvist's "Fast, memory efficient" algorithm, described
-- at http://www.codeproject.com/Articles/13525/Fast-memory-efficient-Levenshtein-algorithm,
-- with some additional optimizations.
-- =============================================
CREATE FUNCTION [dbo].[Levenshtein](
    @s nvarchar(4000)
  , @t nvarchar(4000)
  , @max int
)
RETURNS int
WITH SCHEMABINDING
AS
BEGIN
    DECLARE @distance int = 0 -- return variable
          , @v0 nvarchar(4000)-- running scratchpad for storing computed distances
          , @start int = 1      -- index (1 based) of first non-matching character between the two string
          , @i int, @j int      -- loop counters: i for s string and j for t string
          , @diag int          -- distance in cell diagonally above and left if we were using an m by n matrix
          , @left int          -- distance in cell to the left if we were using an m by n matrix
          , @sChar nchar      -- character at index i from s string
          , @thisJ int          -- temporary storage of @j to allow SELECT combining
          , @jOffset int      -- offset used to calculate starting value for j loop
          , @jEnd int          -- ending value for j loop (stopping point for processing a column)
          -- get input string lengths including any trailing spaces (which SQL Server would otherwise ignore)
          , @sLen int = datalength(@s) / datalength(left(left(@s, 1) + '.', 1))    -- length of smaller string
          , @tLen int = datalength(@t) / datalength(left(left(@t, 1) + '.', 1))    -- length of larger string
          , @lenDiff int      -- difference in length between the two strings
    -- if strings of different lengths, ensure shorter string is in s. This can result in a little
    -- faster speed by spending more time spinning just the inner loop during the main processing.
    IF (@sLen > @tLen) BEGIN
        SELECT @v0 = @s, @i = @sLen -- temporarily use v0 for swap
        SELECT @s = @t, @sLen = @tLen
        SELECT @t = @v0, @tLen = @i
    END
    SELECT @max = ISNULL(@max, @tLen)
         , @lenDiff = @tLen - @sLen
    IF @lenDiff > @max RETURN NULL

    -- suffix common to both strings can be ignored
    WHILE(@sLen > 0 AND SUBSTRING(@s, @sLen, 1) = SUBSTRING(@t, @tLen, 1))
        SELECT @sLen = @sLen - 1, @tLen = @tLen - 1

    IF (@sLen = 0) RETURN @tLen

    -- prefix common to both strings can be ignored
    WHILE (@start < @sLen AND SUBSTRING(@s, @start, 1) = SUBSTRING(@t, @start, 1)) 
        SELECT @start = @start + 1
    IF (@start > 1) BEGIN
        SELECT @sLen = @sLen - (@start - 1)
             , @tLen = @tLen - (@start - 1)

        -- if all of shorter string matches prefix and/or suffix of longer string, then
        -- edit distance is just the delete of additional characters present in longer string
        IF (@sLen <= 0) RETURN @tLen

        SELECT @s = SUBSTRING(@s, @start, @sLen)
             , @t = SUBSTRING(@t, @start, @tLen)
    END

    -- initialize v0 array of distances
    SELECT @v0 = '', @j = 1
    WHILE (@j <= @tLen) BEGIN
        SELECT @v0 = @v0 + NCHAR(CASE WHEN @j > @max THEN @max ELSE @j END)
        SELECT @j = @j + 1
    END

    SELECT @jOffset = @max - @lenDiff
         , @i = 1
    WHILE (@i <= @sLen) BEGIN
        SELECT @distance = @i
             , @diag = @i - 1
             , @sChar = SUBSTRING(@s, @i, 1)
             -- no need to look beyond window of upper left diagonal (@i) + @max cells
             -- and the lower right diagonal (@i - @lenDiff) - @max cells
             , @j = CASE WHEN @i <= @jOffset THEN 1 ELSE @i - @jOffset END
             , @jEnd = CASE WHEN @i + @max >= @tLen THEN @tLen ELSE @i + @max END
        WHILE (@j <= @jEnd) BEGIN
            -- at this point, @distance holds the previous value (the cell above if we were using an m by n matrix)
            SELECT @left = UNICODE(SUBSTRING(@v0, @j, 1))
                 , @thisJ = @j
            SELECT @distance = 
                CASE WHEN (@sChar = SUBSTRING(@t, @j, 1)) THEN @diag                    --match, no change
                     ELSE 1 + CASE WHEN @diag < @left AND @diag < @distance THEN @diag    --substitution
                                   WHEN @left < @distance THEN @left                    -- insertion
                                   ELSE @distance                                        -- deletion
                                END    END
            SELECT @v0 = STUFF(@v0, @thisJ, 1, NCHAR(@distance))
                 , @diag = @left
                 , @j = case when (@distance > @max) AND (@thisJ = @i + @lenDiff) then @jEnd + 2 else @thisJ + 1 end
        END
        SELECT @i = CASE WHEN @j > @jEnd + 1 THEN @sLen + 1 ELSE @i + 1 END
    END
    RETURN CASE WHEN @distance <= @max THEN @distance ELSE NULL END
END

正如此功能的评论中所提到的,字符比较的区分大小写将遵循有效的排序规则。默认情况下,SQL Server的排序规则是导致不区分大小写的比较的排序规则。 修改此函数以始终区分大小写的一种方法是将特定的排序规则添加到比较字符串的两个位置。但是,我没有对此进行全面测试,尤其是在数据库使用非默认排序规则时的副作用。 这些是如何更改这两行以强制进行区分大小写的比较:

    -- prefix common to both strings can be ignored
    WHILE (@start < @sLen AND SUBSTRING(@s, @start, 1) = SUBSTRING(@t, @start, 1) COLLATE SQL_Latin1_General_Cp1_CS_AS) 

            SELECT @distance = 
                CASE WHEN (@sChar = SUBSTRING(@t, @j, 1) COLLATE SQL_Latin1_General_Cp1_CS_AS) THEN @diag                    --match, no change

答案 1 :(得分:55)

Arnold Fribble在sqlteam.com/forums

上有两个提案

这是2006年的年轻人:

SET QUOTED_IDENTIFIER ON 
GO
SET ANSI_NULLS ON 
GO

CREATE FUNCTION edit_distance_within(@s nvarchar(4000), @t nvarchar(4000), @d int)
RETURNS int
AS
BEGIN
  DECLARE @sl int, @tl int, @i int, @j int, @sc nchar, @c int, @c1 int,
    @cv0 nvarchar(4000), @cv1 nvarchar(4000), @cmin int
  SELECT @sl = LEN(@s), @tl = LEN(@t), @cv1 = '', @j = 1, @i = 1, @c = 0
  WHILE @j <= @tl
    SELECT @cv1 = @cv1 + NCHAR(@j), @j = @j + 1
  WHILE @i <= @sl
  BEGIN
    SELECT @sc = SUBSTRING(@s, @i, 1), @c1 = @i, @c = @i, @cv0 = '', @j = 1, @cmin = 4000
    WHILE @j <= @tl
    BEGIN
      SET @c = @c + 1
      SET @c1 = @c1 - CASE WHEN @sc = SUBSTRING(@t, @j, 1) THEN 1 ELSE 0 END
      IF @c > @c1 SET @c = @c1
      SET @c1 = UNICODE(SUBSTRING(@cv1, @j, 1)) + 1
      IF @c > @c1 SET @c = @c1
      IF @c < @cmin SET @cmin = @c
      SELECT @cv0 = @cv0 + NCHAR(@c), @j = @j + 1
    END
    IF @cmin > @d BREAK
    SELECT @cv1 = @cv0, @i = @i + 1
  END
  RETURN CASE WHEN @cmin <= @d AND @c <= @d THEN @c ELSE -1 END
END
GO

答案 2 :(得分:12)

IIRC,使用SQL Server 2005及更高版本,您可以使用任何.NET语言编写存储过程:Using CLR Integration in SQL Server 2005。有了它,编写一个计算Levenstein distance的程序应该不难。

一个简单的Hello,World!从帮助中提取:

using System;
using System.Data;
using Microsoft.SqlServer.Server;
using System.Data.SqlTypes;

public class HelloWorldProc
{
    [Microsoft.SqlServer.Server.SqlProcedure]
    public static void HelloWorld(out string text)
    {
        SqlContext.Pipe.Send("Hello world!" + Environment.NewLine);
        text = "Hello world!";
    }
}

然后在SQL Server中运行以下命令:

CREATE ASSEMBLY helloworld from 'c:\helloworld.dll' WITH PERMISSION_SET = SAFE

CREATE PROCEDURE hello
@i nchar(25) OUTPUT
AS
EXTERNAL NAME helloworld.HelloWorldProc.HelloWorld

现在你可以测试它了:

DECLARE @J nchar(25)
EXEC hello @J out
PRINT @J

希望这有帮助。

答案 3 :(得分:7)

您可以使用Levenshtein距离算法来比较字符串

在这里,您可以在http://www.kodyaz.com/articles/fuzzy-string-matching-using-levenshtein-distance-sql-server.aspx

找到一个T-SQL示例
CREATE FUNCTION edit_distance(@s1 nvarchar(3999), @s2 nvarchar(3999))
RETURNS int
AS
BEGIN
 DECLARE @s1_len int, @s2_len int
 DECLARE @i int, @j int, @s1_char nchar, @c int, @c_temp int
 DECLARE @cv0 varbinary(8000), @cv1 varbinary(8000)

 SELECT
  @s1_len = LEN(@s1),
  @s2_len = LEN(@s2),
  @cv1 = 0x0000,
  @j = 1, @i = 1, @c = 0

 WHILE @j <= @s2_len
  SELECT @cv1 = @cv1 + CAST(@j AS binary(2)), @j = @j + 1

 WHILE @i <= @s1_len
 BEGIN
  SELECT
   @s1_char = SUBSTRING(@s1, @i, 1),
   @c = @i,
   @cv0 = CAST(@i AS binary(2)),
   @j = 1

  WHILE @j <= @s2_len
  BEGIN
   SET @c = @c + 1
   SET @c_temp = CAST(SUBSTRING(@cv1, @j+@j-1, 2) AS int) +
    CASE WHEN @s1_char = SUBSTRING(@s2, @j, 1) THEN 0 ELSE 1 END
   IF @c > @c_temp SET @c = @c_temp
   SET @c_temp = CAST(SUBSTRING(@cv1, @j+@j+1, 2) AS int)+1
   IF @c > @c_temp SET @c = @c_temp
   SELECT @cv0 = @cv0 + CAST(@c AS binary(2)), @j = @j + 1
 END

 SELECT @cv1 = @cv0, @i = @i + 1
 END

 RETURN @c
END

(Joseph Gama开发的功能)

用法:

select
 dbo.edit_distance('Fuzzy String Match','fuzzy string match'),
 dbo.edit_distance('fuzzy','fuzy'),
 dbo.edit_distance('Fuzzy String Match','fuzy string match'),
 dbo.edit_distance('levenshtein distance sql','levenshtein sql server'),
 dbo.edit_distance('distance','server')

算法只返回stpe计数,通过一步替换不同的字符将一个字符串更改为其他字符

答案 4 :(得分:2)

我也在寻找Levenshtein算法的代码示例,很高兴在这里找到它。当然我想了解算法是如何工作的,我正在玩一些上面的例子我正在玩Veve发布的一点点。为了更好地理解代码,我使用Matrix创建了一个EXCEL。

distance for FUZZY compared with FUZY

图片说超过1000个单词。

有了这个EXCEL,我发现有可能进行额外的性能优化。不需要计算右上方红色区域中的所有值。每个红色单元格的值导致左侧单元格的值加1.这是因为,第二个字符串在该区域中将始终比第一个字符串长,这会使每个字符的距离增加1。 / p>

您可以使用语句 IF @j&lt; = @i 并在此声明之前增加 @i 的值来反映这一点。

CREATE FUNCTION [dbo].[f_LevenshteinDistance](@s1 nvarchar(3999), @s2 nvarchar(3999))
    RETURNS int
    AS
    BEGIN
       DECLARE @s1_len  int;
       DECLARE @s2_len  int;
       DECLARE @i       int;
       DECLARE @j       int;
       DECLARE @s1_char nchar;
       DECLARE @c       int;
       DECLARE @c_temp  int;
       DECLARE @cv0     varbinary(8000);
       DECLARE @cv1     varbinary(8000);

       SELECT
          @s1_len = LEN(@s1),
          @s2_len = LEN(@s2),
          @cv1    = 0x0000  ,
          @j      = 1       , 
          @i      = 1       , 
          @c      = 0

       WHILE @j <= @s2_len
          SELECT @cv1 = @cv1 + CAST(@j AS binary(2)), @j = @j + 1;

          WHILE @i <= @s1_len
             BEGIN
                SELECT
                   @s1_char = SUBSTRING(@s1, @i, 1),
                   @c       = @i                   ,
                   @cv0     = CAST(@i AS binary(2)),
                   @j       = 1;

                SET @i = @i + 1;

                WHILE @j <= @s2_len
                   BEGIN
                      SET @c = @c + 1;

                      IF @j <= @i 
                         BEGIN
                            SET @c_temp = CAST(SUBSTRING(@cv1, @j + @j - 1, 2) AS int) + CASE WHEN @s1_char = SUBSTRING(@s2, @j, 1) THEN 0 ELSE 1 END;
                            IF @c > @c_temp SET @c = @c_temp
                            SET @c_temp = CAST(SUBSTRING(@cv1, @j + @j + 1, 2) AS int) + 1;
                            IF @c > @c_temp SET @c = @c_temp;
                         END;
                      SELECT @cv0 = @cv0 + CAST(@c AS binary(2)), @j = @j + 1;
                   END;
                SET @cv1 = @cv0;
          END;
       RETURN @c;
    END;

答案 5 :(得分:1)

在TSQL中,比较两个项目的最佳和最快的方法是在索引列上连接表的SELECT语句。因此,如果您希望从RDBMS引擎的优势中受益,我建议实现编辑距离。 TSQL循环也可以工作,但是对于大容量比较,Levenstein距离计算在其他语言中比在TSQL中更快。

我已经在几个系统中使用一系列连接来实现编辑距离,而不是仅为此目的而设计的临时表。它需要一些繁重的预处理步骤 - 临时表的准备 - 但它与大量的比较非常有效。

简而言之:预处理包括创建,填充和索引临时表。第一个包含引用ID,一个字母列和一个charindex列。这个表是通过运行一系列插入查询来填充的,这些插入查询将每个单词拆分成字母(使用SELECT SUBSTRING)来创建尽可能多的行,因为源列表中的单词有字母(我知道,那很多行但是SQL服务器)可以处理数十亿行)。然后创建一个带有2个字母列的第二个表,另一个带有3个字母列的表等。最终结果是一系列表,其中包含每个单词的引用ID和子串,以及它们的位置参考在这个词中。

一旦完成,整个游戏就是复制这些表并在GROUP BY select查询中将它们与副本连接起来,该查询计算匹配数。这为每对可能的单词创建了一系列度量,然后每对单词重新聚合成一个Levenstein距离。

从技术上讲,这与Levenstein距离(或其变体)的大多数其他实现非常不同,因此您需要深入了解Levenstein距离的工作原理以及它的设计原理。调查替代方案,因为使用该方法,您最终会得到一系列基础指标,这些指标可以帮助同时计算编辑距离的多种变体,为您提供有趣的机器学习潜力改进。

本页前面的答案中已经提到的另一点:尝试尽可能预处理以消除不需要距离测量的对。例如,应排除一对没有单个字母的两个单词,因为编辑距离可以从字符串的长度获得。或者不测量同一个单词的两个副本之间的距离,因为它本质上是0。或者在进行测量之前删除重复项,如果您的单词列表来自长文本,则相同的单词可能会出现多次,因此仅测量一次距离将节省处理时间等。

答案 6 :(得分:1)

我的 Azure Synapse 模组(改为使用 SET 而不是 SELECT):

-- =============================================
-- Computes and returns the Levenshtein edit distance between two strings, i.e. the
-- number of insertion, deletion, and sustitution edits required to transform one
-- string to the other, or NULL if @max is exceeded. Comparisons use the case-
-- sensitivity configured in SQL Server (case-insensitive by default).
-- 
-- Based on Sten Hjelmqvist's "Fast, memory efficient" algorithm, described
-- at http://www.codeproject.com/Articles/13525/Fast-memory-efficient-Levenshtein-algorithm,
-- with some additional optimizations.
-- =============================================
CREATE FUNCTION [db0].[Levenshtein](
    @s nvarchar(4000)
  , @t nvarchar(4000)
  , @max int
)
RETURNS int
WITH SCHEMABINDING
AS
BEGIN
    DECLARE @distance int = 0 -- return variable
          , @v0 nvarchar(4000)-- running scratchpad for storing computed distances
          , @start int = 1      -- index (1 based) of first non-matching character between the two string
          , @i int, @j int      -- loop counters: i for s string and j for t string
          , @diag int          -- distance in cell diagonally above and left if we were using an m by n matrix
          , @left int          -- distance in cell to the left if we were using an m by n matrix
          , @sChar nchar      -- character at index i from s string
          , @thisJ int          -- temporary storage of @j to allow SELECT combining
          , @jOffset int      -- offset used to calculate starting value for j loop
          , @jEnd int          -- ending value for j loop (stopping point for processing a column)
          -- get input string lengths including any trailing spaces (which SQL Server would otherwise ignore)
          , @sLen int = datalength(@s) / datalength(left(left(@s, 1) + '.', 1))    -- length of smaller string
          , @tLen int = datalength(@t) / datalength(left(left(@t, 1) + '.', 1))    -- length of larger string
          , @lenDiff int      -- difference in length between the two strings
    -- if strings of different lengths, ensure shorter string is in s. This can result in a little
    -- faster speed by spending more time spinning just the inner loop during the main processing.
    IF (@sLen > @tLen) BEGIN
        SET @v0 = @s
        SET @i = @sLen -- temporarily use v0 for swap
        SET @s = @t
        SET @sLen = @tLen
        SET @t = @v0
        SET @tLen = @i
    END
    SET @max = ISNULL(@max, @tLen)
    SET @lenDiff = @tLen - @sLen

    IF @lenDiff > @max RETURN NULL

    -- suffix common to both strings can be ignored
    WHILE(@sLen > 0 AND SUBSTRING(@s, @sLen, 1) = SUBSTRING(@t, @tLen, 1))
        SET @sLen = @sLen - 1
        SET @tLen = @tLen - 1

    IF (@sLen = 0) RETURN @tLen

    -- prefix common to both strings can be ignored
    WHILE (@start < @sLen AND SUBSTRING(@s, @start, 1) = SUBSTRING(@t, @start, 1)) 
        SET @start = @start + 1
    IF (@start > 1) BEGIN
        SET @sLen = @sLen - (@start - 1)
        SET @tLen = @tLen - (@start - 1)

        -- if all of shorter string matches prefix and/or suffix of longer string, then
        -- edit distance is just the delete of additional characters present in longer string
        IF (@sLen <= 0) RETURN @tLen

        SET @s = SUBSTRING(@s, @start, @sLen)
        SET @t = SUBSTRING(@t, @start, @tLen)
    END

    -- initialize v0 array of distances
    SET @v0 = ''
    SET @j = 1

    WHILE (@j <= @tLen) BEGIN
        SET @v0 = @v0 + NCHAR(CASE WHEN @j > @max THEN @max ELSE @j END)
        SET @j = @j + 1
    END

    SET @jOffset = @max - @lenDiff
    SET @i = 1

    WHILE (@i <= @sLen) BEGIN
        SET @distance = @i
        SET @diag = @i - 1
        SET @sChar = SUBSTRING(@s, @i, 1)
             -- no need to look beyond window of upper left diagonal (@i) + @max cells
             -- and the lower right diagonal (@i - @lenDiff) - @max cells
        SET @j = CASE WHEN @i <= @jOffset THEN 1 ELSE @i - @jOffset END
        SET @jEnd = CASE WHEN @i + @max >= @tLen THEN @tLen ELSE @i + @max END

        WHILE (@j <= @jEnd) BEGIN
            -- at this point, @distance holds the previous value (the cell above if we were using an m by n matrix)
            SET @left = UNICODE(SUBSTRING(@v0, @j, 1))
            SET @thisJ = @j

            SET @distance = 
                CASE WHEN (@sChar = SUBSTRING(@t, @j, 1)) THEN @diag                    --match, no change
                     ELSE 1 + CASE WHEN @diag < @left AND @diag < @distance THEN @diag    --substitution
                                   WHEN @left < @distance THEN @left                    -- insertion
                                   ELSE @distance                                        -- deletion
                                   END
                     END
            SET @v0 = STUFF(@v0, @thisJ, 1, NCHAR(@distance))
            SET @diag = @left
            SET @j = case when (@distance > @max) AND (@thisJ = @i + @lenDiff) 
                then @jEnd + 2 
                else @thisJ + 1 end
        END
        SET @i = CASE WHEN @j > @jEnd + 1 THEN @sLen + 1 ELSE @i + 1 END
    END
    RETURN CASE WHEN @distance <= @max THEN @distance ELSE NULL END
END