我已经使用tensorflow js编写了一个简单的序列到序列编码器。输入形状为[10,1326],输出形状为[10]。在输入中,可能有多达8个空时间步长,只有1个空位,全为0。
这是模型:
Sub Email_Budget()
Dim objOutlook As Object
Set objOutlook = CreateObject("Outlook.Application")
Dim objEmail As Object
Set objEmail = objOutlook.CreateItem(olMailItem)
Dim CaseCount As Long
CaseCount = WorksheetFunction.CountA(Range("B6:B500"))
'Debug.Print CaseCount
Dim i As Integer
With objEmail
.To = "abc@xyz.com"
.Subject = "TEST1: May 2019 Budget"
.HTMLBody = "Karen,<br><br>"
.HTMLBody = .HTMLBody & "The potential " & MonthName(Month(ActiveSheet.Range("A2"))) & " invoices are below.<br><br>"
For i = 1 To CaseCount
If ActiveSheet.Cells(i + 5, 4).Value = "Yes" Then
.HTMLBody = .HTMLBody & "<ul style='list-style-type:disc;'>" & "<li>" & ActiveSheet.Cells(i + 5, 2).Value & " - " & Format(ActiveSheet.Cells(i + 5, 6).Value, "Currency") _
& " (" & Format(ActiveSheet.Cells(i + 5, 8).Value, "Currency") & " without budget or invoicing)." & "</li>" & "</ul>"
End If
Next i
.HTMLBody = .HTMLBody & "<br>Thank you,<br>Kurt"
.Display
End With
End Sub
经过一些训练后,我看到了这样的预测:
const tf = require('@tensorflow/tfjs-node')
module.exports = function() {
const model = tf.sequential();
model.add(tf.layers.masking({maskValue:0, inputShape:[10, 1326]}))
model.add(tf.layers.lstm({units:20, returnSequences:true}))
model.add(tf.layers.lstm({units:15, returnSequences:false}))
model.add(tf.layers.dense({units:10}))
model.add(tf.layers.reLU({maxValue:1}))
const optimizer = tf.train.adadelta()
model.compile({
optimizer:optimizer,
loss:tf.losses.absoluteDifference,
})
return model
}
我期望的地方:
Tensor
[[0.2750083, 0.2593362, 0.1763182, 0 , 0.0915875, 0.0430228, 0, 0, 0, 0],
[0.2601015, 0.231798 , 0.144048 , 0 , 0.0815957, 0.056561 , 0, 0, 0, 0],
[0.256667 , 0.2420369, 0.1736434, 0 , 0.0854579, 0.0473421, 0, 0, 0, 0],
[0.2556586, 0.273939 , 0.1369745, 0 , 0.113734 , 0.0677839, 0, 0, 0, 0],
[0.1967069, 0.1931839, 0.1047193, 0.0016383, 0.0509892, 0.0433681, 0, 0, 0, 0],
[0.2441588, 0.2343057, 0.1448116, 0 , 0.0733367, 0.0689584, 0, 0, 0, 0],
[0.2288964, 0.2493394, 0.1462133, 0 , 0.1020615, 0.0668219, 0, 0, 0, 0],
[0.2435157, 0.2482093, 0.1485323, 0 , 0.1007352, 0.0541206, 0, 0, 0, 0],
[0.272615 , 0.2631502, 0.1571562, 0 , 0.1078788, 0.0649559, 0, 0, 0, 0],
[0.273352 , 0.2620186, 0.1684739, 0 , 0.0936071, 0.0462594, 0, 0, 0, 0]]
输出中的第4个以及最后4个特征几乎始终为0。有什么明显的我想念的地方吗?任何建议都很棒