我正在使用并行循环和熊猫编写引导程序算法。我遇到的问题是并行循环内的合并命令会导致“ ValueError:缓冲区源数组为只读”错误-但仅当我使用完整的数据集进行合并(120k行)时。少于12k行的任何子集都可以正常工作,因此我推断这不是语法问题。我该怎么办?
当前的熊猫版本为0.24.2,cython为0.29.7。
_RemoteTraceback Traceback (most recent call last)
_RemoteTraceback:
"""
Traceback (most recent call last):
File "/home/ubuntu/.local/lib/python3.6/site-packages/joblib/externals/loky/process_executor.py", line 418, in _process_worker
r = call_item()
File "/home/ubuntu/.local/lib/python3.6/site-packages/joblib/externals/loky/process_executor.py", line 272, in __call__
return self.fn(*self.args, **self.kwargs)
File "/home/ubuntu/.local/lib/python3.6/site-packages/joblib/_parallel_backends.py", line 567, in __call__
return self.func(*args, **kwargs)
File "/home/ubuntu/.local/lib/python3.6/site-packages/joblib/parallel.py", line 225, in __call__
for func, args, kwargs in self.items]
File "/home/ubuntu/.local/lib/python3.6/site-packages/joblib/parallel.py", line 225, in <listcomp>
for func, args, kwargs in self.items]
File "<ipython-input-72-cdb83eaf594c>", line 12, in bootstrap
File "/home/ubuntu/.local/lib/python3.6/site-packages/pandas/core/frame.py", line 6868, in merge
copy=copy, indicator=indicator, validate=validate)
File "/home/ubuntu/.local/lib/python3.6/site-packages/pandas/core/reshape/merge.py", line 48, in merge
return op.get_result()
File "/home/ubuntu/.local/lib/python3.6/site-packages/pandas/core/reshape/merge.py", line 546, in get_result
join_index, left_indexer, right_indexer = self._get_join_info()
File "/home/ubuntu/.local/lib/python3.6/site-packages/pandas/core/reshape/merge.py", line 756, in _get_join_info
right_indexer) = self._get_join_indexers()
File "/home/ubuntu/.local/lib/python3.6/site-packages/pandas/core/reshape/merge.py", line 735, in _get_join_indexers
how=self.how)
File "/home/ubuntu/.local/lib/python3.6/site-packages/pandas/core/reshape/merge.py", line 1130, in _get_join_indexers
llab, rlab, shape = map(list, zip(* map(fkeys, left_keys, right_keys)))
File "/home/ubuntu/.local/lib/python3.6/site-packages/pandas/core/reshape/merge.py", line 1662, in _factorize_keys
rlab = rizer.factorize(rk)
File "pandas/_libs/hashtable.pyx", line 111, in pandas._libs.hashtable.Int64Factorizer.factorize
File "stringsource", line 653, in View.MemoryView.memoryview_cwrapper
File "stringsource", line 348, in View.MemoryView.memoryview.__cinit__
ValueError: buffer source array is read-only
"""
The above exception was the direct cause of the following exception:
ValueError Traceback (most recent call last)
<ipython-input-73-652c1db5701b> in <module>()
1 num_cores = multiprocessing.cpu_count()
----> 2 results = Parallel(n_jobs=num_cores, prefer='processes', verbose = 5)(delayed(bootstrap)() for i in range(n_trials))
3 #pd.DataFrame(results[0])
~/.local/lib/python3.6/site-packages/joblib/parallel.py in __call__(self, iterable)
932
933 with self._backend.retrieval_context():
--> 934 self.retrieve()
935 # Make sure that we get a last message telling us we are done
936 elapsed_time = time.time() - self._start_time
~/.local/lib/python3.6/site-packages/joblib/parallel.py in retrieve(self)
831 try:
832 if getattr(self._backend, 'supports_timeout', False):
--> 833 self._output.extend(job.get(timeout=self.timeout))
834 else:
835 self._output.extend(job.get())
~/.local/lib/python3.6/site-packages/joblib/_parallel_backends.py in wrap_future_result(future, timeout)
519 AsyncResults.get from multiprocessing."""
520 try:
--> 521 return future.result(timeout=timeout)
522 except LokyTimeoutError:
523 raise TimeoutError()
/usr/lib/python3.6/concurrent/futures/_base.py in result(self, timeout)
430 raise CancelledError()
431 elif self._state == FINISHED:
--> 432 return self.__get_result()
433 else:
434 raise TimeoutError()
/usr/lib/python3.6/concurrent/futures/_base.py in __get_result(self)
382 def __get_result(self):
383 if self._exception:
--> 384 raise self._exception
385 else:
386 return self._result
ValueError: buffer source array is read-only
,代码是
def bootstrap():
df_resample_ids = skl.utils.resample(ob_ids)
df_resample_ids = pd.DataFrame(df_resample_ids).sort_values(by="0").reset_index(drop=True)
df_resample_ids.columns = [ob_id_field]
df_resample = pd.DataFrame(df_resample_ids.merge(df, on = ob_id_field))
return df_resample
num_cores = multiprocessing.cpu_count()
results = Parallel(n_jobs=num_cores, prefer='processes', verbose = 5)(delayed(bootstrap)() for i in range(n_trials))
算法将根据ID变量创建重新采样/替换的ID,并使用merge命令基于重新采样的ID和df中存储的原始数据集创建新的数据集。如果我(在任何地方)切出原始数据集的子集而留下的行少于〜12k,则并行循环将完成而不会出现错误,并且按预期进行。
根据要求,下面是一个新代码段,用于重新创建数据结构并反映我当前正在使用的主要方法:
import pandas as pd
import sklearn as skl
import multiprocessing
from joblib import Parallel, delayed
df = pd.DataFrame(np.random.randn(200000, 24), columns=list('ABCDDEFGHIJKLMNOPQRSTUVW'))
df["ID"] = df.index.drop_duplicates().tolist()
ob_ids = df.index.drop_duplicates().tolist()
def bootstrap2():
df_resample_ids = skl.utils.resample(ob_ids)
df_resample_ids = pd.DataFrame(df_resample_ids).sort_values(by=0).reset_index(drop=True)
df_resample_ids.columns = ['ID']
df_resample = pd.DataFrame(df1.merge(df_resample_ids, on = 'ID'))
result = df_resample
return result
num_cores = multiprocessing.cpu_count()
results = Parallel(n_jobs=num_cores, prefer='processes', verbose = 5)(delayed(bootstrap2)() for i in range(n_trials))
但是,我注意到当数据完全由np.random数组成时,循环顺利进行而没有错误。原始数据框的dtype为:
start_rtg int64
end_rtg float64
days_diff float64
ultimate_customer_system_id int64
如何避免出现只读错误?
答案 0 :(得分:0)
发布我的问题的答案,因为我发现变量之一是int64数据类型。当我将所有变量都转换为float64时,错误消失了。所以这是一个仅限于某些数据类型的问题...
欢呼 斯蒂芬