尝试使用RASA NLU为Sinhala语言开发聊天机器人。
我的config.yml
pipeline:
- name: "WhitespaceTokenizer"
- name: "CRFEntityExtractor"
- name: "EntitySynonymMapper"
- name: "CountVectorsFeaturizer"
- name: "EmbeddingIntentClassifier"
在data.json中,我添加了以下示例数据。 当我训练nlu模型并尝试输入样本以提取“සිංහලෙන්”作为媒介时,它仅输出意图和实体值,而不输出实体。 我在做什么错了?
{
"text": "සිංහලෙන් දේශන පවත්වන්නේ නැද්ද?",
"intent": "ask_medium",
"entities": [{
"start":0,
"end":8,
"value": "සිංහලෙන්",
"entity": "medium"
}]
},
{
"text": "සිංහලෙන් lectures කරන්නේ නැද්ද?",
"intent": "ask_medium",
"entities": [{
"start":0,
"end":8,
"value": "සිංහලෙන්",
"entity": "medium"
}]
}
测试nlu模型时得到的响应是
{'intent':
{'name': 'ask_langmedium', 'confidence': 0.9747527837753296}, 'entities':
[{'start': 10,
'end': 18,
'value': 'සිංහලෙන්',
'entity': '-',
'confidence': 0.5970129041418675,
'extractor': 'CRFEntityExtractor'}],
'intent_ranking': [
{'name': 'ask_langmedium', 'confidence': 0.9747527837753296},
{'name': 'ask_langmedium_request_possibility', 'confidence':
0.07433460652828217}],
'text': 'උගන්නන්නේ සිංහලෙන් ද ?'}
答案 0 :(得分:1)
如果这是您完整的数据集,那么我不确定您如何生成模型,因为rasa至少需要两个意图。我添加了一个关于hello和其他数据的意图,我只是用自己的代码复制了您的数据,效果很好,这就是我得到的输出。
Enter a message: උගන්නන්නේ සිංහලෙන් ද?
{
"intent": {
"name": "ask_medium",
"confidence": 0.9638749361038208
},
"entities": [
{
"start": 10,
"end": 18,
"value": "\u0dc3\u0dd2\u0d82\u0dc4\u0dbd\u0dd9\u0db1\u0dca",
"entity": "medium",
"confidence": 0.7177257810884379,
"extractor": "CRFEntityExtractor"
}
]
}
这是我的完整代码
DataSet.json
{
"rasa_nlu_data": {
"common_examples": [
{
"text": "හෙලෝ",
"intent": "hello",
"entities": []
},
{
"text": "සිංහලෙන් දේශන පවත්වන්නේ නැද්ද?",
"intent": "ask_medium",
"entities": [{
"start":0,
"end":8,
"value": "සිංහලෙන්",
"entity": "medium"
}]
},
{
"text": "සිංහලෙන් lectures කරන්නේ නැද්ද?",
"intent": "ask_medium",
"entities": [{
"start":0,
"end":8,
"value": "සිංහලෙන්",
"entity": "medium"
}]
}
],
"regex_features" : [],
"lookup_tables" : [],
"entity_synonyms": []
}
}
nlu_config.yml
pipeline: "supervised_embeddings"
培训命令
python -m rasa_nlu.train -c ./config/nlu_config.yml --data ./data/sh_data.json -o models --fixed_model_name nlu --project current --verbose
&testing.py
from rasa_nlu.model import Interpreter
import json
interpreter = Interpreter.load('./models/current/nlu')
def predict_intent(text):
results = interpreter.parse(text)
print(json.dumps({
"intent": results["intent"],
"entities": results["entities"]
}, indent=2))
keep_asking = True
while(keep_asking):
text = input('Enter a message: ')
if (text == 'exit'):
keep_asking = False
break
else:
predict_intent(text)