我试图根据其他参数预测,数据为24个输入和1个输出(持续595天)。
我已经尝试创建具有 10倍交叉验证的神经网络,但是它给我带来了30%至15%的训练错误和40%的测试错误。
def create_model():
model = Sequential()
# Adding the input layer
model.add(Dense(24, kernel_initializer='normal', activation='relu', input_shape=(24,)))
# Adding the hidden layer
model.add(Dense(50, kernel_initializer='normal', activation='relu'))
model.add(Dense(50, kernel_initializer='normal', activation='relu'))
model.add(Dense(50, kernel_initializer='normal', activation='relu'))
model.add(Dense(50, kernel_initializer='normal', activation='relu'))
model.add(Dense(50, kernel_initializer='normal', activation='relu'))
model.add(Dense(50, kernel_initializer='normal', activation='relu'))
model.add(Dense(50, kernel_initializer='normal', activation='relu'))
model.add(Dense(50, kernel_initializer='normal', activation='relu'))
model.add(Dense(1))
# Compiling the RNN
model.compile(optimizer='adam', loss='mean_absolute_percentage_error')
return model
kf = KFold(n_splits = 10, shuffle = True)
Density = create_model()
不知道如何最小化错误?还是有回归函数?