如何正确地在Apache Spark中加入2个数据框?

时间:2019-05-02 05:27:03

标签: scala apache-spark apache-spark-sql

我是 Apache Spark 的新手,需要帮助。有人可以说出如何正确加入下两个数据帧吗?!

第一个数据帧:

| DATE_TIME           | PHONE_NUMBER |
|---------------------|--------------|
| 2019-01-01 00:00:00 | 7056589658   |
| 2019-02-02 00:00:00 | 7778965896   |

第二个数据帧:

| DATE_TIME           | IP            |
|---------------------|---------------|
| 2019-01-01 01:00:00 | 194.67.45.126 |
| 2019-02-02 00:00:00 | 102.85.62.100 |
| 2019-03-03 03:00:00 | 102.85.62.100 |

我想要的最终数据框:

| DATE_TIME           | PHONE_NUMBER | IP            |
|---------------------|--------------|---------------|
| 2019-01-01 00:00:00 | 7056589658   |               |
| 2019-01-01 01:00:00 |              | 194.67.45.126 |
| 2019-02-02 00:00:00 | 7778965896   | 102.85.62.100 |
| 2019-03-03 03:00:00 |              | 102.85.62.100 |

下面是我尝试的代码:

import org.apache.spark.sql.Dataset
import spark.implicits._

val df1 = Seq(
    ("2019-01-01 00:00:00", "7056589658"),
    ("2019-02-02 00:00:00", "7778965896")
).toDF("DATE_TIME", "PHONE_NUMBER")

df1.show()

val df2 = Seq(
    ("2019-01-01 01:00:00", "194.67.45.126"),
    ("2019-02-02 00:00:00", "102.85.62.100"),
    ("2019-03-03 03:00:00", "102.85.62.100")
).toDF("DATE_TIME", "IP")

df2.show()

val total = df1.join(df2, Seq("DATE_TIME"), "left_outer")

total.show()

不幸的是,它引发了错误:

org.apache.spark.SparkException: Exception thrown in awaitResult:
  at org.apache.spark.util.ThreadUtils$.awaitResult(ThreadUtils.scala:205)
  at org.apache.spark.sql.execution.exchange.BroadcastExchangeExec.doExecuteBroadcast(BroadcastExchangeExec.scala:136)
  at org.apache.spark.sql.execution.InputAdapter.doExecuteBroadcast(WholeStageCodegenExec.scala:367)
  at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeBroadcast$1.apply(SparkPlan.scala:144)
  at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeBroadcast$1.apply(SparkPlan.scala:140)
  at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:155)
  at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
  at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:152)
  at org.apache.spark.sql.execution.SparkPlan.executeBroadcast(SparkPlan.scala:140)
  at org.apache.spark.sql.execution.joins.BroadcastHashJoinExec.prepareBroadcast(BroadcastHashJoinExec.scala:135)
...

2 个答案:

答案 0 :(得分:3)

您需要full outer join,但是您的代码很好。您的问题可能是其他问题,但是您提到的堆栈跟踪信息无法得出问题的根源。

val total = df1.join(df2, Seq("DATE_TIME"), "full_outer")

答案 1 :(得分:1)

您可以这样做:

val total = df1.join(df2, (df1("DATE_TIME") === df2("DATE_TIME")), "left_outer")