我正在
C:/Users/HP/.PyCharmCE2019.1/config/scratches/scratch.py追溯 (最近通话最近):
文件“ C:/Users/HP/.PyCharmCE2019.1/config/scratches/scratch.py”,第25行, 在dtree.fit(x_train,y_train)中
文件“ C:\ Users \ HP \ PycharmProjects \ untitled \ venv \ lib \ site-packages \ sklearn \ tree \ tree.py”, 第801行,适合X_idx_sorted = X_idx_sorted)
文件“ C:\ Users \ HP \ PycharmProjects \ untitled \ venv \ lib \ site-packages \ sklearn \ tree \ tree.py”, 第236行,适合“样本数=%d”%(len(y),n_samples))
ValueError:标签数= 45与样本数= 36不匹配
我正在使用DecisionTree模型,但出现错误。帮助将不胜感激。
#importing libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
#reading the dataset
df=pd.read_csv(r'C:\csv\kyphosis.csv')
print(df)
print(df.head())
#visualising the dataset
print(sns.pairplot(df,hue='Kyphosis',palette='Set1'))
plt.show()
#training and testing
from sklearn.modelselection import traintestsplit
c=df.drop('Kyphosis',axis=1) d=df['Kyphosis']
xtrain,ytrain,xtest,ytest=traintestsplit(c,d,testsize=0.30)
#Decision_Tree
from sklearn.tree import DecisionTreeClassifier
dtree=DecisionTreeClassifier()
dtree.fit(xtrain,ytrain)
#Predictions
predictions=dtree.predict(xtest) from sklearn.metrics import
classificationreport,confusionmatrix
print(classificationreport(ytest,predictions))
print(confusionmatrix(y_test,predictions))
预期结果应该是我的classification_report
和confusion_matrix
答案 0 :(得分:3)
因此,函数dtree.fit(xtrain, ytrain)
会引发错误,因为xtrain
和ytrain
的长度不相等。
检查生成它的代码部分:
xtrain,ytrain,xtest,ytest=traintestsplit(c,d,testsize=0.30)
中的示例进行比较
import numpy as np from sklearn.model_selection import train_test_split [...] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)
您会看到两件事:
1 traintestsplit
应该是train_test_split
2通过更改=
左侧变量的顺序,可以为这些变量分配不同的数据。
因此,您的代码应为:
xtrain, xtest, ytrain, ytest = train_test_split(c,d,testsize=0.30)