k类的数据帧过滤建议

时间:2019-04-29 09:39:13

标签: python pandas dataframe data-science

我有两个类别列,第一列的值是client_abc,client_def, 第二列是F1,F2,F3,其余是数字列。

数据看起来像

 date       client          facility     count     claim
21/3/2019   'client_abc'     F1           200        1300
22/3/2019    'client_def'    F2           400        1800
21/3/2019    'client_abc'    F3           1000       3000
22/3/2019    'client_def'    F1           380        3600
21/3/2019    'client_abc'    F2           900        900
22/3/2019    'client_def'    F3           1030       2500
21/3/2019    'client_abc'    F1           190        1700
22/3/2019    'client_def'    F2           100000     1560

对于客户端“ abc”和“ f1”

 date       client          facility     count     claim
21/3/2019   'client_abc'     F1           200        1300
21/3/2019    'client_abc'    F1           190        1700

类似于'abc' and 'f2''abc' and 'f3''def' and 'f1''def' and 'f2''def' and 'f3'

我的尝试

df_fac_f1 =df[facility=='F1' & client == 'client_abc' ]
df_fac_f1 =df[facility=='F1' & client == 'client_def' ]
df_fac_f1 =df[facility=='F2' & client == 'client_abc' ]
df_fac_f1 =df[facility=='F2' & client == 'client_def' ]
df_fac_f1 =df[facility=='F3' & client == 'client_abc' ]
df_fac_f1 =df[facility=='F3' & client == 'client_def' ]

如何在不事先知道facilityclient列值的情况下获得相同的结果?

2 个答案:

答案 0 :(得分:0)

for group, grouped in df.groupby(["facility", "client"]):
    pass # grouped is a df of grouped by this columns values 

More info

答案 1 :(得分:0)

您可以使用以下代码:

grouped = df.groupby(['client','facility'])
print(grouped.get_group(('client_abc', 'F1')))

输出:

         date      client facility  count
 0  21/3/2019  client_abc       F1    200
 2  21/3/2019  client_abc       F1   1000
 4  21/3/2019  client_abc       F1    900
 6  21/3/2019  client_abc       F1    190