我有一个熊猫DataFrame,后面的几列是“ A”,“ B”,“ C”,“ D”。我想合并具有以下条件的DataFrame的行-
如果我的DataFrame称为df:
(df.at[i,"A"] == df.at[j, "B"]) and (df.at[j,"A"] == df.at[i,"B"])
例如-
df = pd.DataFrame([[1,2,10,0.55],[3,4,5,0.3],[2,1,2,0.7]], columns=["A","B","C","D"])
哪个给-
In [93]: df
Out[93]:
A B C D
0 1 2 10 0.55
1 3 4 5 0.30
2 2 1 2 0.70
在上面的示例中,行0和2具有条件。我肯定知道最多可以有2行对应于这种情况。对于有这种情况的行,我想对“ C”值求和,对“ D”取平均值,然后删除多余的行。在上面的示例中,我想获取-
In [95]: result
Out[95]:
A B C D
0 1 2 12 0.625
1 3 4 5 0.300
或
In [95]: result
Out[95]:
A B C D
0 2 1 12 0.625
1 3 4 5 0.300
我尝试了以下非常慢的代码:
def remove_dups(path_to_df: str):
df = pd.read_csv(path_to_df)
for i in range(len(df)):
a = df.at[i, "A"]
b = df.at[i, "B"]
same_row = df[(df["A"] == b) & (df["B"] == a)]
if same_row.empty:
continue
c = df.at[i, "C"]
d = df.at[i, "D"]
df.drop(i, inplace=True)
new_ind = same_row.index[0]
df.at[new_ind, "C"] += c
df.at[new_ind, "D"] = (df.at[new_ind, "D"] + distance) / 2
return df
有没有办法仅使用内置的Pandas函数来完成此任务?
答案 0 :(得分:2)
先使用numpy.sort
,然后再使用GroupBy.agg
:
df[['A','B']] = np.sort(df[['A','B']], axis=1)
df = df.groupby(['A','B'], as_index=False).agg({'C':'sum', 'D':'mean'})
print (df)
A B C D
0 1 2 12 0.625
1 3 4 5 0.300
如果原始值无法更改:
arr = np.sort(df[['A','B']], axis=1)
df = (df.groupby([arr[:, 0],arr[:, 1]])
.agg({'C':'sum', 'D':'mean'})
.rename_axis(('A','B'))
.reset_index())
print (df)
A B C D
0 1 2 12 0.625
1 3 4 5 0.300