from sklearn.feature_extraction.text import CountVectorizer
import flask
import pickle
with open('model/KTcategory-predictor.pkl', 'rb') as f:
model = pickle.load(f)
with open('model/KTtfidf.pkl', 'rb') as f:
tfidf = pickle.load(f)
app = flask.Flask(__name__, template_folder='templates')
@app.route('/', methods=['GET', 'POST'])
def main():
count_vectorizer = CountVectorizer()
if flask.request.method == 'GET':
return(flask.render_template('main.html'))
if flask.request.method == 'POST':
text = flask.request.form['text'`
text = text.split(" ")
input_tc = count_vectorizer.transform(text)
input_tfidf = tfidf.transform(input_tc)
predictions = model.predict(input_tfidf)
return (predictions)
if __name__ == '__main__':
app.run(debug = True)