对于Tensorflow中的神经网络,一批输入的输出不同于该批中每个输入的输出

时间:2019-04-23 12:45:39

标签: python tensorflow neural-network

我使用tensorflow 1.8,python 3.5和Windows 10来构建神经网络。 现在,我想收集一批输入作为神经网络的输入。但是我发现有些困惑。

当我将批次中的每个输入(例如分别包含3个数组)放入批次中时,我会得到如下结果:

input(1)
[[-0.02692897 -0.03908982 -0.01578733 -0.01504654  0.02450592  0.01947054
  -0.02676752 -0.01917666  0.01936193  0.00408307  0.02334256  0.02143812
  -0.0030923  -0.00462034  0.05150664 -0.00511832 -0.02197915 -0.00747188
   0.00887368  0.02778551  0.02663407 -0.04100436 -0.01207645  0.02224508
  -0.00502366 -0.01461473  0.05860103  0.00348206 -0.05176451  0.04181299
  -0.00867486 -0.03567595 -0.05745618  0.05188627  0.00775612  0.01768746
   0.00999217 -0.00296307  0.02664051 -0.04164632  0.05470607 -0.02736513
  -0.01645982 -0.00916753  0.04894571 -0.02026801  0.0468831   0.02868102
  -0.00475237 -0.02818991 -0.00358583 -0.01493043  0.0290164  -0.01078751
  -0.0374933   0.01449602  0.04310944 -0.01696572  0.05669416  0.01611015
   0.007667   -0.01522103  0.01240731  0.00879388  0.01272955 -0.03045401
  -0.00846879 -0.01863868 -0.00854502 -0.05032277  0.01803133  0.02157342
  -0.01348906 -0.04085188 -0.0191056  -0.014448    0.03539667  0.00082406
  -0.06092907  0.00374502 -0.03160831 -0.02406421  0.03367792 -0.01895053
   0.02847722 -0.01144491  0.02083589  0.00850848  0.00842468  0.03270741
  -0.01254861 -0.03890391 -0.00217735  0.05016148  0.02249428  0.02832348
   0.00260775 -0.01649905  0.01784565 -0.01581169]]
output
[[ 0.00396302 -0.01919217 -0.11362895]]

input(2)
[[-2.33860500e-03 -6.36590496e-02 -2.25870237e-02 -5.66520169e-02
  -1.47972926e-02  2.16148910e-03 -2.86009517e-02 -2.54487991e-02
  -5.74010285e-03  1.09514492e-02  1.41426474e-02  2.45856978e-02
  -3.81153785e-02 -4.08029519e-02  7.04206973e-02 -3.96048138e-03
  -1.49977617e-02 -2.57393196e-02 -1.28207020e-02  4.31949608e-02
   2.56654564e-02 -8.19921307e-03  1.80648696e-02 -2.10555214e-02
  -3.99227180e-02  5.55533171e-03  3.49735767e-02 -3.43401427e-03
  -1.55919567e-02  6.03180118e-02 -2.19617505e-02 -4.63087037e-02
  -5.51730543e-02  4.62662335e-03 -2.31043529e-02 -3.30487378e-02
   1.08707463e-02 -2.39517204e-02  4.06590328e-02 -5.18664718e-02
   4.03931886e-02  8.63777380e-03 -3.89002962e-03  5.23323797e-05
   3.06941057e-03 -3.55914757e-02  2.48787254e-02  1.54354060e-02
  -1.59684233e-02  3.14703174e-02 -2.86886226e-02  8.81753117e-03
   1.56278200e-02 -3.60304825e-02 -6.47309870e-02  7.22086616e-03
   2.72711534e-02  4.46651950e-02  4.75119315e-02  1.28488885e-02
   3.04374984e-03 -2.88453922e-02 -7.26217264e-03  3.72415152e-03
   6.41038129e-03 -1.08471129e-03  1.27645936e-02 -5.67848869e-02
  -4.00970876e-02 -6.65567741e-02  1.21807251e-02  4.00495492e-02
  -1.28227668e-02 -1.33121302e-02 -2.56709680e-02  4.54149162e-03
   4.46238443e-02 -1.37233045e-02 -5.38579002e-02  1.78707577e-02
  -8.11182894e-03 -1.50115415e-02  4.01578955e-02 -4.20019031e-02
   4.06283997e-02 -7.22978190e-02 -2.08040774e-02  1.92635823e-02
   2.46056560e-02  5.80835491e-02 -3.57985832e-02 -1.02872364e-02
  -8.82912893e-03  3.30532677e-02  4.77855764e-02 -2.40224693e-03
  -2.69014109e-02 -5.26522584e-02  1.47666584e-03  3.41499448e-02]]
output
[[-0.05926291 -0.10402986 -0.1300593 ]]

input(3)
[[-0.02692897 -0.03908982 -0.01578733 -0.01504654  0.02450592  0.01947054
  -0.02676752 -0.01917666  0.01936193  0.00408307  0.02334256  0.02143812
  -0.0030923  -0.00462034  0.05150664 -0.00511832 -0.02197915 -0.00747188
   0.00887368  0.02778551  0.02663407 -0.04100436 -0.01207645  0.02224508
  -0.00502366 -0.01461473  0.05860103  0.00348206 -0.05176451  0.04181299
  -0.00867486 -0.03567595 -0.05745618  0.05188627  0.00775612  0.01768746
   0.00999217 -0.00296307  0.02664051 -0.04164632  0.05470607 -0.02736513
  -0.01645982 -0.00916753  0.04894571 -0.02026801  0.0468831   0.02868102
  -0.00475237 -0.02818991 -0.00358583 -0.01493043  0.0290164  -0.01078751
  -0.0374933   0.01449602  0.04310944 -0.01696572  0.05669416  0.01611015
   0.007667   -0.01522103  0.01240731  0.00879388  0.01272955 -0.03045401
  -0.00846879 -0.01863868 -0.00854502 -0.05032277  0.01803133  0.02157342
  -0.01348906 -0.04085188 -0.0191056  -0.014448    0.03539667  0.00082406
  -0.06092907  0.00374502 -0.03160831 -0.02406421  0.03367792 -0.01895053
   0.02847722 -0.01144491  0.02083589  0.00850848  0.00842468  0.03270741
  -0.01254861 -0.03890391 -0.00217735  0.05016148  0.02249428  0.02832348
   0.00260775 -0.01649905  0.01784565 -0.01581169]]
output
[[ 0.00396302 -0.01919217 -0.11362895]]

但是如果我将这3个输入放入一个新数组中,并将这个新数组输入到神经网络作为输入,我会得到不同的结果:

input
[[-0.02692897 -0.03908982 -0.01578733 ... -0.01649905  0.01784565
  -0.01581169]
 [-0.00233861 -0.06365905 -0.02258702 ... -0.05265226  0.00147667
   0.03414994]
 [-0.02692897 -0.03908982 -0.01578733 ... -0.01649905  0.01784565
  -0.01581169]]
output:
[[ 0.00396303 -0.01919215 -0.11362892]
 [-0.05926289 -0.10402983 -0.1300593 ]
 [ 0.00396303 -0.01919215 -0.11362892]]

您可以看到输出值略有变化。我认为这与tensorflow处理精度的方式有关,因为变化发生在最后两位。

但是有人知道我如何使批量输入的结果和单个输入的结果相同吗?

0 个答案:

没有答案