我正在尝试为sklearn管道创建一个自定义转换器,该转换器将提取特定文本的平均单词长度,然后对其应用标准缩放器以标准化数据集。我正在向管道传递一系列文本。
class AverageWordLengthExtractor(BaseEstimator, TransformerMixin):
def __init__(self):
pass
def average_word_length(self, text):
return np.mean([len(word) for word in text.split( )])
def fit(self, x, y=None):
return self
def transform(self, x , y=None):
return pd.DataFrame(pd.Series(x).apply(self.average_word_length))
然后我创建了这样的管道。
pipeline = Pipeline(['text_length', AverageWordLengthExtractor(),
'scale', StandardScaler()])
在此管道上执行fit_transform时,我得到了错误,
File "custom_transformer.py", line 48, in <module>
main()
File "custom_transformer.py", line 43, in main
'scale', StandardScaler()])
File "/opt/conda/lib/python3.6/site-packages/sklearn/pipeline.py", line 114, in __init__
self._validate_steps()
File "/opt/conda/lib/python3.6/site-packages/sklearn/pipeline.py", line 146, in _validate_steps
names, estimators = zip(*self.steps)
TypeError: zip argument #2 must support iteration
答案 0 :(得分:1)
Pipeline
构造函数需要一个参数steps
,该参数是元组的列表。
更正的版本:
pipeline = Pipeline([('text_length', AverageWordLengthExtractor()),
('scale', StandardScaler())])
docs中的更多信息。