我正在尝试在Python中实现矩阵过滤,到目前为止,实现似乎非常缓慢且效率低下。我想知道是否存在执行这种过滤的有效方法。
提供一个大矩阵A和一个过滤矩阵M,该函数应返回一个“重新混合”矩阵R,该矩阵是通过将A的每个元素(i,j)乘以M获得的,然后将结果叠加/插入到R中在位置(i,j)。请在下面找到所需的代码。
下面的示例在我的计算机上耗时约68秒(!),这似乎效率很低。
如果您能推荐加速此功能的方法,我将不胜感激。提前非常感谢!
import numpy as np
import time
nx = ny = 1500
n_mix = 50
# matrix to be filtered
A = np.random.random_sample( (nx, ny) )
# filter to be applied to each point:
M = np.random.random_sample( (2*n_mix+1, 2*n_mix+1) )
# the result is stored in "remix":
remix = np.zeros_like(A)
start = time.time()
for i in range(n_mix, nx-n_mix):
for j in range(n_mix, ny-n_mix):
remix[i - n_mix:i + n_mix + 1, j - n_mix:j + n_mix + 1 ] += M * A[i,j]
print remix
duration = time.time() - start
print(round(duration))
更新
实际上,scipy中的ndimage包具有完成此工作的常规卷积功能。我将在尊重您的时间的情况下,发布进行过滤的3种方法。最快的是ndimage.convolution(24秒对比其他方法的56和68)。但是,它似乎仍然很慢...
import numpy as np
from scipy import ndimage
import time
import sys
def remix_function(A, M):
n = (np.shape(M)[0]-1)/2
R = np.zeros_like(A)
for k in range(-n, n+1):
for l in range(-n, n+1):
# Ak = np.roll(A, -k, axis = 0)
# Akl = np.roll(Ak, -l, axis = 1)
R += np.roll(A, (-k,-l), axis = (0,1) ) * M[n-k, n-l]
return R
if __name__ == '__main__':
np.set_printoptions(precision=2)
nx = ny = 1500
n_mix = 50
nb = 2*n_mix+1
# matrix to be filtered
A = np.random.random_sample( (nx, ny) )
# filter to be applied to each point:
M = np.random.random_sample( (nb, nb) )
# the result is stored in "remix":
remix1 = np.zeros_like(A)
remix2 = np.zeros_like(A)
remix3 = np.zeros_like(A)
#------------------------------------------------------------------------------
# var 1
#------------------------------------------------------------------------------
start = time.time()
remix1 = remix_function(A, M)
duration = time.time() - start
print('time for var1 =', round(duration))
#------------------------------------------------------------------------------
# var 2
#------------------------------------------------------------------------------
start = time.time()
for i in range(n_mix, nx-n_mix):
for j in range(n_mix, ny-n_mix):
remix2[i - n_mix:i + n_mix + 1, j - n_mix:j + n_mix + 1 ] += M * A[i,j]
duration = time.time() - start
print('time for var2 =', round(duration))
#------------------------------------------------------------------------------
# var 3
#------------------------------------------------------------------------------
start = time.time()
remix3 = ndimage.convolve(A, M)
duration = time.time() - start
print('time for var3 (convolution) =', round(duration))
答案 0 :(得分:1)
我还不能评论帖子,但是您的double for循环是问题所在。您是否尝试过定义一个函数然后使用np.vectorize?