这是PCA的结果。 可以解释RC1和RC3与哪些变量相关。 但是,无法在RC2中解释。 检查特征值时,因子数为3。 但是真的可以只有两个吗?还是RC2中应该关联哪些变量?
输入变量是7种类型。我使用了“ principal()”函数。
names(mydata)
[1] "A" "B" "C" "D" "E" "F" "G"
> x<-cbind(A, B, C, D, E, F, G)
> e_value<-eigen(cor(x))
> e_value
eigen() decomposition
$values
[1] 2.3502254 1.4170606 1.2658360 0.8148231 0.5608698 0.3438629 0.2473222
$vectors
[,1] [,2] [,3] [,4] [,5]
[,6] [,7]
[1,] 0.2388621 0.46839043 0.37003850 0.47205027 -0.58802244
-0.133939151 -0.009233395
[2,] 0.1671739 -0.71097984 -0.14062597 0.25083439 -0.26726985
-0.502411130 -0.244983436
[3,] 0.2132841 -0.19677142 0.64662974 0.34508779 0.61416969
-0.003950736 0.036814153
[4,] 0.1697817 -0.24468987 0.55631886 -0.69016805 -0.34039757
0.039899816 0.089531675
[5,] 0.4857016 0.36681570 -0.09905329 -0.31456085 0.26225761
-0.344919726 -0.577088755
[6,] -0.5359245 0.20164924 0.17958243 -0.13144417 0.11755661
-0.748885304 0.218966481
[7,] 0.5635252 0.03619081 -0.27131854 -0.05105919 0.08439733
-0.219629096 0.741315659
> PCA<-principal(x,nfactors = 3, rotate = "varimax")
> print(PCA)
Principal Components Analysis
Call: principal(r = x, nfactors = 3, rotate = "varimax")
Standardized loadings (pattern matrix) based upon correlation matrix
RC1 RC2 RC3 h2 u2 com
A 0.24 0.69 0.29 0.62 0.38 1.6
B 0.25 -0.83 0.24 0.81 0.19 1.3
C 0.06 0.05 0.83 0.69 0.31 1.0
D 0.03 -0.04 0.74 0.54 0.46 1.0
E 0.76 0.42 -0.01 0.76 0.24 1.5
F -0.83 0.24 -0.17 0.77 0.23 1.3
G 0.92 -0.01 0.00 0.84 0.16 1.0
RC1 RC2 RC3
SS loadings 2.23 1.40 1.40
Proportion Var 0.32 0.20 0.20
Cumulative Var 0.32 0.52 0.72
Proportion Explained 0.44 0.28 0.28
Cumulative Proportion 0.44 0.72 1.00
Mean item complexity = 1.3
Test of the hypothesis that 3 components are sufficient.
The root mean square of the residuals (RMSR) is 0.11
with the empirical chi square 63.33 with prob < 1.1e-13
Fit based upon off diagonal values = 0.84
答案 0 :(得分:0)
PCA和7个变量之间的关系就在输出中:
Standardized loadings (pattern matrix) based upon correlation matrix
RC1 RC2 RC3 h2 u2 com
A 0.24 0.69 0.29 0.62 0.38 1.6
B 0.25 -0.83 0.24 0.81 0.19 1.3
C 0.06 0.05 0.83 0.69 0.31 1.0
D 0.03 -0.04 0.74 0.54 0.46 1.0
E 0.76 0.42 -0.01 0.76 0.24 1.5
F -0.83 0.24 -0.17 0.77 0.23 1.3
G 0.92 -0.01 0.00 0.84 0.16 1.0
此矩阵告诉您哪些变量与THE PCA相关。因此,您可以看到A
和B
与主成分2(标记为RC2
)密切相关。
PCA是数据的轮换,因此,主变量与变量(7)一样多。但是大多数人都对可视化感兴趣,因此通常只选择前2个或3个主成分进行绘图。