我正在运行一个简单的代码来测量我的实时流的FPS(使用网络摄像头)。当我将图像调整为较大的帧时,FPS会降低。有什么方法可以同时放大框架(通过调整大小功能)来维持FPS。还是不可避免的权衡?
这是使用face_recognition库进行人脸识别的代码。当我将尺寸调整为较大尺寸时,FPS(每秒帧数)变慢。 有什么方法可以维持较高的FPS,同时还可以使用cv2.resize()
放大图像吗?
import face_recognition
import cv2
video_capture = cv2.VideoCapture(0)
#video_capture.set(cv2.CAP_PROP_FPS, 30)
# Load a sample picture and learn how to recognize it.
obama_image = face_recognition.load_image_file("osama LinkedIN.jpg")
obama_face_encoding = face_recognition.face_encodings(obama_image)[0]
# Load a second sample picture and learn how to recognize it.
imran_shafqat_image = face_recognition.load_image_file("haris intern3.jpg")
imran_shafqat_face_encoding = face_recognition.face_encodings(imran_shafqat_image)[0]
# Create arrays of known face encodings and their names
known_face_encodings = [
obama_face_encoding,
imran_shafqat_face_encoding,
# obama_face_encoding2
# biden_face_encoding
]
known_face_names = [
"Osama Naeem",
"Imran Shafqat"
# "random guy2"
]
# Initialize some variables
face_locations = []
face_encodings = []
face_names = []
process_this_frame = True
fxx = 1.5
fyy = 1.5
while True:
# Grab a single frame of video
ret, frame = video_capture.read()
# Resize frame of video to 1/4 size for faster face recognition processing
small_frame = cv2.resize(frame, (0, 0), fx=fxx, fy=fyy)
# Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses)
rgb_small_frame = small_frame[:, :, ::-1]
#rgb_small_frame = frame[:, :, ::-1]
# Only process every other frame of video to save time
if process_this_frame:
# Find all the faces and face encodings in the current frame of video
face_locations = face_recognition.face_locations(rgb_small_frame)
face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations)
face_names = []
for face_encoding in face_encodings:
# See if the face is a match for the known face(s)
matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
print ("match = ", matches)
name = "Unknown"
# If a match was found in known_face_encodings, just use the first one.
if True in matches:
first_match_index = matches.index(True)
name = known_face_names[first_match_index]
face_names.append(name)
process_this_frame = not process_this_frame
# Display the results
for (top, right, bottom, left), name in zip(face_locations, face_names):
# Scale back up face locations since the frame we detected in was scaled to 1/4 size
top *= (1/fxx)
right *= (1/fxx)
bottom *= (1/fyy)
left *= (1/fyy)
# Draw a box around the face
cv2.rectangle(frame, (round(left), round(top)), (round(right), round(bottom)), (0, 0, 255), 2)
# Draw a label with a name below the face
#cv2.rectangle(frame, (round(left) - 35, round(bottom) - 40), (round(right), round(bottom)), (0, 0, 255), cv2.FILLED)
font = cv2.FONT_HERSHEY_DUPLEX
cv2.putText(frame, name, (round(left) + 6, round(bottom) - 6), font, 0.5, (255, 255, 255), 1)
# Display the resulting image
cv2.imshow('Video', frame)
# Hit 'q' on the keyboard to quit!
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# Release handle to the webcam
video_capture.release()
cv2.destroyAllWindows()
代码工作正常,但是当我将FPS放大到较大尺寸时,我想保持FPS不变。
答案 0 :(得分:0)
使用cv2.resize()
放大图像时,会创建较大的图像,这会增加每帧的处理时间。本质上,您的程序必须做其他工作才能处理更多像素。但是,可能允许您提高FPS的解决方案是使用multithreading。通过这种方法,您可以通过减少I / O延迟来提高FPS,而不是减少处理每个调整大小的帧所需的时间。这个想法是在您在主线程中进行处理时,将阅读框分成自己的独立线程。这是一个小部件,显示了如何将阅读框和处理分成单独的线程。
from threading import Thread
import cv2, time
class VideoStreamWidget(object):
def __init__(self, src=0):
self.capture = cv2.VideoCapture(src)
# Start the thread to read frames from the video stream
self.thread = Thread(target=self.update, args=())
self.thread.daemon = True
self.thread.start()
def update(self):
# Read the next frame from the stream in a different thread
while True:
if self.capture.isOpened():
(self.status, self.frame) = self.capture.read()
time.sleep(.01)
def show_frame(self):
# Display frames in main program
cv2.imshow('frame', self.frame)
key = cv2.waitKey(1)
if key == ord('q'):
self.capture.release()
cv2.destroyAllWindows()
exit(1)
if __name__ == '__main__':
video_stream_widget = VideoStreamWidget()
while True:
try:
video_stream_widget.show_frame()
except AttributeError:
pass