在编译基于pandas和numpy的代码时遇到麻烦。我将通过提供问题所在的缩小比例的工作示例来尝试解释问题。
我基本上想做的是通过以下方式优化Markowitz投资组合。
首先,我有一个pandas.Dataframe,它通过以下方式为给定的股票提供收盘价。
df = pd.DataFrame()
df['AAPL'] = [1.2,1.4,1.5]
df['GOOGL'] = [2.1,2.4,2.6]
df['DATE'] = ['2017-01-01', '2017-01-02','2017-01-03']
df = df.set_index('DATE')
接下来,我想创建一些基本统计信息以通过一些函数来传递,这是通过以下方式进行的:
returns = df.pct_change()
mean_returns = returns.mean()
cov_matrix = returns.cov()
num_portfolios = 10
risk_free_rate = 0.0178
这些统计信息的类型为:
pandas.core.series.Series
pandas.core.frame.DataFrame
以下功能开始出现问题:
def portfolio_annualised_performance(weights, mean_returns, cov_matrix):
returns = np.sum(mean_returns*weights ) *252
std = np.sqrt(np.dot(weights.T, np.dot(cov_matrix, weights))) * np.sqrt(252)
return std, returns
def random_portfolios(num_portfolios, mean_returns, cov_matrix, risk_free_rate):
results = np.zeros((3,num_portfolios))
print('results:',type(results))
weights_record = []
for i in range(num_portfolios):
weights = np.random.random(12)
weights /= np.sum(weights)
weights_record.append(weights)
portfolio_std_dev, portfolio_return = portfolio_annualised_performance(weights, mean_returns, cov_matrix)
results[0,i] = portfolio_std_dev
results[1,i] = portfolio_return
results[2,i] = (portfolio_return - risk_free_rate) / portfolio_std_dev
#print('results[2,0]:',type(results[2,0]))
#print('std', type(portfolio_std_dev))
#print(portfolio_return)
return results, weights_record
def display_simulated_ef_with_random(mean_returns, cov_matrix, num_portfolios, risk_free_rate):
results, weights = random_portfolios(num_portfolios, mean_returns, cov_matrix, risk_free_rate)
max_sharpe_idx = np.argmax(np.array(results[2]))
sdp, rp = results[0,max_sharpe_idx], results[1,max_sharpe_idx]
max_sharpe_allocation = pd.DataFrame(weights[max_sharpe_idx],index=df.columns,columns=['allocation'])
max_sharpe_allocation.allocation = [round(i*100,2)for i in max_sharpe_allocation.allocation]
max_sharpe_allocation = max_sharpe_allocation.T
min_vol_idx = np.argmin(results[0])
sdp_min, rp_min = results[0,min_vol_idx], results[1,min_vol_idx]
min_vol_allocation = pd.DataFrame(weights[min_vol_idx],index=df.columns,columns=['allocation'])
min_vol_allocation.allocation = [round(i*100,2)for i in min_vol_allocation.allocation]
min_vol_allocation = min_vol_allocation.T
尝试运行时:
display_simulated_ef_with_random(cov_matrix,mean_returns,num_portfolios,risk_free_rate)
出现以下错误
----> 2 results, weights = random_portfolios(num_portfolios, mean_returns, cov_matrix, risk_free_rate)
---> 15 results[0,i] = portfolio_std_dev
ValueError: setting an array element with a sequence.
我在做什么错,我该如何解决?
答案 0 :(得分:1)
您正在使用错误的参数调用函数。交换前两个,效果很好:
display_simulated_ef_with_random(mean_returns, cov_matrix, num_portfolios, risk_free_rate)