如何将数据框转换为嵌套字典?

时间:2019-04-16 17:24:34

标签: python pandas dataframe dictionary

我有一个看起来像这样的数据框:

    ORG                 SURVEY_DATE     NOS
Asset Management    2018-04-23          1.0
Asset Management    2018-05-08          1.0
Asset Management    2018-10-29          1.0
CIO                 2018-11-08          1.0
CIO                 2018-11-13          2.0

我想将其转换为像这样的字典。

{
  "Asset Management": {
    "2019-03-30": 50,
    "2019-03-31": 40,
    "2019-04-01": 20,
    "2019-04-02": 30
  },
  "CIO": {
    "2019-03-30": 10,
    "2019-03-31": 20,
  }
}

2 个答案:

答案 0 :(得分:2)

假设您的数据帧位于名为df的变量中:

>>> df.groupby('ORG').apply(lambda f: {key: value for key, value in zip(f.SURVEY_DATE, f.NOS)} ).to_dict()
{'Asset Management': {'2018-04-23': 1.0, '2018-05-08': 1.0, '2018-10-29': 1.0},
 'CIO': {'2018-11-08': 1.0, '2018-11-13': 2.0}}

答案 1 :(得分:2)

好的,我更新了答案。哇!现在可以了。

In [9]: df
Out[9]:
                ORG SURVEY_DATE  NOS
0  Asset Management  2018-04-23  1.0
1  Asset Management  2018-05-08  1.0
2  Asset Management  2018-10-29  1.0
3               CIO  2018-11-08  1.0
4               CIO  2018-11-13  2.0

In [10]: df.groupby('ORG').apply(lambda x: dict(zip(x['SURVEY_DATE'],x['NOS']))).to_dict()
Out[10]:
{'Asset Management': {'2018-04-23': '1.0',
  '2018-05-08': '1.0',
  '2018-10-29': '1.0'},
 'CIO': {'2018-11-08': '1.0', '2018-11-13': '2.0'}}

说明:如果您有2个或多个迭代,则可以使用zip同时遍历它们:

x = [1,2,3]
y = [4,5,6]
for i,j in zip(x, y):
    print(i, j) # (1,4), (2,5), (3,6)

我是creating a dictionary from a tuplelambda也是任何一个线性函数定义的简写:

foo = lambda x: x+1
# equivalent
def foo(x):
  return x+1