我编写了一个用户定义的函数,该函数循环遍历一行值,以给出值之间的零个数(值之间的距离)。将这些距离附加到列表中,然后取平均值作为值之间的平均距离的最终值。当我只加载一行值的CSV文件时,该功能非常有用。但是,我希望能够将该功能应用于具有多行的文件,然后将每行的输出报告到数据框中。
这一切都在python 3.7中运行。我试图创建一个嵌套循环,以便手动应用该功能。我已经尝试了numpy.apply_along_axis函数。我也尝试过以pandas数据框的形式读取文件,然后使用.apply()函数。但是,我有点不熟悉pandas,当我用pandas indexing替换函数中的numpy indexing时,我开始产生多个错误。
例如,当我加载较大的CSV文件并尝试将其应用于file [0]时,该功能不起作用。看来只有当我加载具有一行值的文件时,它才起作用。
def avg_dist():
import statistics as st
dist = []
ctr=0
#distances between events
for i in range(len(n)):
if n[i] > 0 and i < (len(n)-1):
if n[i+1]==0:
i+=1
while n[i]==0 and i < (len(n)-1):
ctr+=1
i+=1
dist.append(ctr)
ctr=0
else:
i+=1
else:
i+=1
#Average distance between events
aved = st.mean(dist)
return(aved)
答案 0 :(得分:0)
最新答案位于答案的结尾。有几处修改。
答案的最后(第四次编辑)采用了全新的方法。
我不确定您要做什么,但希望能对您有所帮助。
import numpy as np
# Generate some events
events = np.random.rand(3,12)*10.
events *= np.random.randint(5, size=(3,12))<1
events
Out[36]:
array([[ 0. , 0. , 0. , 0. , 0. ,
0. , 5.35598205, 0. , 0. , 0. ,
0. , 0. ],
[ 0. , 6.65094145, 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 6.04581361],
[ 6.88119682, 4.31178109, 0. , 0. , 0. ,
0. , 0. , 1.16999289, 0. , 0. ,
0. , 0. ]])
# generate a boolean array of events. (as int for a compact print.)
an_event = (events != 0).astype(np.int)
n_event
Out[37]:
array([[0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0]])
def event_range(arr):
from_start = arr.cumsum(axis=1)
from_end = np.flip(arr, axis=1).cumsum(axis=1)
from_end = np.flip(from_end, axis=1)
return np.logical_and(from_start, from_end).astype(np.int)
event_range函数逐步进行。
from_start是an_event的总和。任何事件之前为零,之后为> 0。
from_start = an_event.cumsum(axis=1) # cumsum the event count. zeros before the first event.
from_start
Out[40]:
array([[0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1], # zeroes before the first event.
[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2],
[1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3]], dtype=int32)
from_end是an_event的总和,但从最大值到最小值。因此,在最后一个事件之后为零。
from_end = np.flip(an_event, axis=1).cumsum(axis=1) # cumsum of reversed arrays
from_end = np.flip(from_end, axis=1) # reverse the result.
from_end
Out[41]:
array([[1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0], # zero after the last event.
[2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[3, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0]], dtype=int32)
从逻辑上将它们组合在一起,得到第一个事件之前的零,此后一个,最后一个事件之后的零。
ev_range = np.logical_and(from_start, from_end).astype(np.int)
ev_range
Out[42]:
# zero before first and after last event, one between the events.
array([[0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0]])
n_range = ev_range.sum(axis=1)
n_range
Out[43]: array([ 1, 11, 8])
n_events = an_event.sum(axis=1)
n_events
Out[44]: array([1, 2, 3])
avg = n_range / n_events
avg
Out[45]: array([ 1. , 5.5 , 2.66666667])
平均应为n_range /(n_events-1)吗?即计算差距,而不是事件。
对于连续仅一个事件,您会有什么期望?对于连续零个事件该怎么办?
编辑以下评论
计算大于零的间隙会涉及到一点。最简单的方法可能是采用连续列的差异。如果这些为-1,则为1,然后为零。您需要在数据中添加最后的零列,以防最后一列中有事件。
np.random.seed(10)
test = 1*(np.random.randint(4, size=(4,12))<1)
test
Out[24]:
array([[0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0],
[0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1],
[0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0]])
temp = np.diff(test, axis=-1)
temp
Out[26]:
array([[ 0, 1, -1, 1, -1, 0, 1, -1, 0, 1, -1],
[ 0, 1, -1, 1, -1, 1, -1, 1, -1, 1, 0],
[ 0, 0, 1, -1, 0, 0, 0, 1, 0, -1, 0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0]])
np.where(temp<0, 1,0)
Out[28]:
array([[0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1],
[0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0],
[0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0]])
In [29]: np.where(temp<0, 1,0).sum(axis=-1)-1
Out[29]: array([3, 3, 1, 0]) # should be [3, 4, 1, 0]
添加一列零以进行测试。
test = np.hstack((test, np.zeros((4,1), dtype = np.int)))
test
Out[31]:
array([[0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0],
[0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0],
[0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]])
temp=np.diff(test, axis=-1)
temp
Out[35]:
array([[ 0, 1, -1, 1, -1, 0, 1, -1, 0, 1, -1, 0],
[ 0, 1, -1, 1, -1, 1, -1, 1, -1, 1, 0, -1], # An extra -1 here.
[ 0, 0, 1, -1, 0, 0, 0, 1, 0, -1, 0, 0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0]])
np.where(temp<0, 1,0).sum(axis=-1)-1
Out[36]: array([3, 4, 1, 0])
正如我所说,有点牵连。遍历可能更容易,但是如果更难理解,则应该更快。
第二个编辑跟随另一个想法。
import numpy as np
np.random.seed(10)
test = 1*(np.random.randint(4, size=(4,12))<1)
test
Out[2]:
array([[0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0],
[0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1],
[0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0]])
temp = np.diff(test, axis=-1)
np.where(temp<0, 1, 0).sum(axis=-1)+test[:,-1]-1
# +test[:,-1] adds the last column to include any 1's from there.
Out[4]: array([3, 4, 1, 0])
第三次编辑
通过创建2个函数来思考这一点,我还展示了一个do_divide,它可以解决被零除的问题。
import numpy as np
def zero_after_last_event(arr):
"""
Returns an array set to zero in all cells after the last event
"""
from_end = np.flip(arr, axis=-1).cumsum(axis=-1) # cumsum of reversed arrays
from_end = np.flip(from_end, axis=-1) # reverse the result.
from_end[from_end>0] = 1 # gt zero set to 1
return from_end
def event_range(arr):
""" event_range is zero before the first event,
zero after the last event and 1 elsewhere. """
return np.logical_and(arr.cumsum(axis=-1), zero_after_last_event(arr)).astype(np.int)
def do_divide(a, b):
""" Does a protected divide. Returns zero for divide by zero """
with np.errstate(invalid='ignore'): # Catch divide by zero
result = a / b
result[~np.isfinite(result)] = 0.
return result
设置测试阵列
np.random.seed(10)
events = 1*(np.random.randint(4, size=(4,12))<1)
events
Out[15]:
array([[0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0],
[0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1],
[0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0]])
具有上面的功能和数据,如下。
# Count gap lengths
gaps = 1 - events # invert the values in events (1->0, 0->1)
gaps = np.logical_and(gaps, event_range(events)).astype(np.int)
gaps
Out[19]:
array([[0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0],
[0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0],
[0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])
sumgaps = gaps.sum(axis = -1)
sumgaps
Out[22]: array([5, 4, 4, 0])
# Count how many gaps
temp = np.diff(events, axis=-1) # temp is -1 when an event isn't immediately followed by another event.
n_gaps = np.where(temp<0, 1, 0).sum(axis=-1)+events[:,-1]-1
# +test[:,-1] adds the last column to include any 1's from there.
n_gaps
Out[23]: array([3, 4, 1, 0])
do_divide(sum_gaps, n_gaps)
Out[21]: array([1.66666667, 1. , 4. , 0. ])
第四次修改-使用np.bincount
import numpy as np
def do_divide(a, b):
""" Does a protected divide. Returns zero for divide by zero """
with np.errstate(invalid='ignore'): # Catch divide by zero
result = a / b
result[~np.isfinite(result)] = 0.
return result
np.random.seed(10)
events = 1*(np.random.randint(4, size=(4,12))<1)
cumulative = events.cumsum(axis=1)
cumulative
Out[2]:
array([[0, 0, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4],
[0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 6],
[0, 0, 0, 1, 1, 1, 1, 1, 2, 3, 3, 3],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1]])
bin_count_len = 1+cumulative.max() # Biggest bins length required.
result = np.zeros((cumulative.shape[0], bin_count_len), dtype=np.int)
for ix, row in enumerate(cumulative):
result[ix] = np.bincount( row, minlength = bin_count_len )
result
Out[4]:
array([[2, 2, 3, 3, 2, 0, 0],
[2, 2, 2, 2, 2, 1, 1],
[3, 5, 1, 3, 0, 0, 0],
[9, 3, 0, 0, 0, 0, 0]])
丢失列0。它在任何事件之前。总是在最后一个事件之后丢失最后一列。间隙包括打开事件,-1将其从间隙大小中删除。
temp = result[:, 1:-1]-1 #
temp
Out[6]:
array([[ 1, 2, 2, 1, -1],
[ 1, 1, 1, 1, 0],
[ 4, 0, 2, -1, -1],
[ 2, -1, -1, -1, -1]])
如果temp [r,n + 1] == 0则设置任何单元格temp [r,n] = 0
temp_lag = (result[:, 2:]>0)*1
temp_lag
Out[8]:
array([[1, 1, 1, 0, 0],
[1, 1, 1, 1, 1],
[1, 1, 0, 0, 0],
[0, 0, 0, 0, 0]])
temp *= temp_lag
temp
Out[10]:
array([[1, 2, 2, 0, 0],
[1, 1, 1, 1, 0],
[4, 0, 0, 0, 0],
[0, 0, 0, 0, 0]])
tot_gaps = temp.sum(axis=1)
n_gaps = np.count_nonzero(temp, axis=1)
tot_gaps, n_gaps
Out[13]: (array([5, 4, 4, 0]), array([3, 4, 1, 0]))
do_divide(tot_gaps, n_gaps)
Out[14]: array([1.66666667, 1. , 4. , 0. ])
HTH