我正在使用Hyperopt对神经网络进行超参数优化。这样做时,经过几次迭代,我得到了MemoryError异常
到目前为止,我尝试清除所有已使用过的变量(为它们分配None或空列表,是否有更好的方法呢?),并使用它们打印所有locals(),dirs()和globals()大小,但是这些计数永远不会增加,而且大小很小。
结构如下:
def create_model(params):
## load data from temp files
## pre-process data accordingly
## Train NN with crossvalidation clearing Keras' session every time
## save stats and clean all variables (assigning None or empty lists to them)
def Optimize():
for model in models: #I have multiple models
## load data
## save data to temp files
trials = Trials()
best_run = fmin(create_model,
space,
algo=tpe.suggest,
max_evals=100,
trials=trials)
经过X次迭代(有时它完成了前100次并转移到了第二个模型),然后抛出内存错误。 我的猜测是某些变量仍保留在内存中,我没有清除它们,但是我无法检测到它们。
编辑:
Traceback (most recent call last):
File "Main.py", line 32, in <module>
optimal = Optimize(training_sets)
File "/home/User1/Optimizer/optimization2.py", line 394, in Optimize
trials=trials)
File "/usr/local/lib/python3.5/dist-packages/hyperopt/fmin.py", line 307, in fmin
return_argmin=return_argmin,
File "/usr/local/lib/python3.5/dist-packages/hyperopt/base.py", line 635, in fmin
return_argmin=return_argmin)
File "/usr/local/lib/python3.5/dist-packages/hyperopt/fmin.py", line 320, in fmin
rval.exhaust()
File "/usr/local/lib/python3.5/dist-packages/hyperopt/fmin.py", line 199, in exhaust
self.run(self.max_evals - n_done, block_until_done=self.async)
File "/usr/local/lib/python3.5/dist-packages/hyperopt/fmin.py", line 173, in run
self.serial_evaluate()
File "/usr/local/lib/python3.5/dist-packages/hyperopt/fmin.py", line 92, in serial_evaluate
result = self.domain.evaluate(spec, ctrl)
File "/usr/local/lib/python3.5/dist-packages/hyperopt/base.py", line 840, in evaluate
rval = self.fn(pyll_rval)
File "/home/User1/Optimizer/optimization2.py", line 184, in create_model
x_train, x_test = x[train_indices], x[val_indices]
MemoryError
答案 0 :(得分:1)
我花了几天的时间弄清楚了,所以我会回答我自己的问题,以节省任何遇到此问题的人。
通常,在将Hyperopt用于Keras时,return
函数的建议create_model
如下所示:
return {'loss': -acc, 'status': STATUS_OK, 'model': model}
但是在大型模型中,具有许多评估,您不希望返回每个模型并将其保存在内存中,您所需要的只是提供最低loss
只需从返回的字典中删除模型,就可以解决每次评估时内存增加的问题。
return {'loss': -acc, 'status': STATUS_OK}