Python有效地找到坐标数组中最接近的值

时间:2019-04-12 13:07:13

标签: python numpy coordinates

我有两组数组,我要寻找的是array2中与array1中每个值最近的点的索引,例如:

import numpy as np
from scipy.spatial import distance

array1 = np.array([[1,2,1], [4,2,6]])

array2 = np.array([[0,0,1], [4,5,0], [1,2,0], [6,5,0]])

def f(x):
    return distance.cdist([x], array2 ).argmin()

def array_map(x):
    return np.array(list(map(f, x)))

array_map(array1)

此代码返回正确的结果,但是当两个数组都很大时速度很慢。我想知道是否可以更快地做到这一点?

1 个答案:

答案 0 :(得分:1)

感谢@ Max7CD,这是一个可以有效工作的解决方案(至少出于我的目的):

from scipy import spatial

tree =spatial.KDTree(array2)

slitArray = np.split(array1, 2) #I split the data so that the KDtree doesn't take for ever and so that I can moniter progress, probably useless

listFinal = []
for elem in slitArray:
    a = tree.query(elem)
    listFinal.append(a[1])
    print("Fnished")

b = np.array(listFinal).ravel()