我正在尝试提取贝叶斯p值(即,如果点估计为负,或者如果点估计为正,则大于0的估计比例)我从lmer
模型中得出的估计值<0))。我了解“ p值”本质上是常客,但我需要贝叶斯p值来安抚评论者(similar to this user)。
出于可重复性的目的,我使用R中的数据集来说明我的问题。数据集:
library(datasets)
data(ChickWeight) #importing data from base R
summary(ChickWeight)
weight Time Chick Diet
Min. : 35.0 Min. : 0.00 13 : 12 1:220
1st Qu.: 63.0 1st Qu.: 4.00 9 : 12 2:120
Median :103.0 Median :10.00 20 : 12 3:120
Mean :121.8 Mean :10.72 10 : 12 4:118
3rd Qu.:163.8 3rd Qu.:16.00 17 : 12
Max. :373.0 Max. :21.00 19 : 12
(Other):506
我的真实数据具有连续和离散的预测变量,并且对个体身份具有随机影响。
创建lmer
模型:
install.packages("lme4", dependencies=TRUE)
library(lme4)
m1<-lmer(weight ~ Time + Diet+ (1|Chick), data=ChickWeight)
summary(m1)
Linear mixed model fit by REML ['lmerMod']
Formula: weight ~ Time + Diet + (1 | Chick)
Data: ChickWeight
REML criterion at convergence: 5584
Scaled residuals:
Min 1Q Median 3Q Max
-3.0591 -0.5779 -0.1182 0.4962 3.4515
Random effects:
Groups Name Variance Std.Dev.
Chick (Intercept) 525.4 22.92
Residual 799.4 28.27
Number of obs: 578, groups: Chick, 50
Fixed effects:
Estimate Std. Error t value
(Intercept) 11.2438 5.7887 1.942
Time 8.7172 0.1755 49.684
Diet2 16.2100 9.4643 1.713
Diet3 36.5433 9.4643 3.861
Diet4 30.0129 9.4708 3.169
Correlation of Fixed Effects:
(Intr) Time Diet2 Diet3
Time -0.307
Diet2 -0.550 -0.015
Diet3 -0.550 -0.015 0.339
Diet4 -0.550 -0.011 0.339 0.339
与ChickWeight
数据集不同,我的真实数据集具有正负两个估计值。
然后我想从我的模型m1
中提取95%的可信区间:
install.packages(c("MCMCglmm", "arm"), dependencies=TRUE)
library(MCMCglmm)
library(arm)
sm1<-sim(m1,1000)
smfixef=sm1@fixef #fixed effects
smranef=sm1@ranef #random effects
smfixef=as.mcmc(smfixef)
posterior.mode(smfixef) #extract estimates for fixed effects
(Intercept) Time Diet2 Diet3 Diet4
10.489143 8.800899 16.761983 31.684341 28.037318
HPDinterval(smfixef) ##extract 95% credible intervals for fixed effects
lower upper
(Intercept) -0.05392775 21.960966
Time 8.38244319 9.064171
Diet2 -0.46587564 34.061686
Diet3 17.90445947 53.817409
Diet4 11.17259787 48.467258
attr(,"Probability")
[1] 0.95
现在我要获取贝叶斯p值:
install.packages("conting", dependencies=TRUE)
library(conting)
bayespval(object=sm1, n.burnin = 0, thin = 1, statistic = "X2")
#this last line is the line I am having trouble with
Error: $ operator not defined for this S4 class
如何设置模型m1
,提取每种估算的贝叶斯p值的正确格式是什么?
有一个发布了original package/code的示例,但是我的模型未按其模型进行设置。
我不需要使用此软件包,并且很乐意从我的1000个模拟中计算得出。在那种情况下,我需要知道如何计算多少估算值低于零/高于零。该数字/ 1000(估计总数)将是贝叶斯p值。
答案 0 :(得分:1)
要提取贝叶斯p值(,即,如果点估计为负,则估计值的比例为> 0;如果点估计为正,则估计值的比例为<0 ),您可以提取每个模拟的点估计值,然后除以模拟数量。
要使用ChickWeight
数据集和上述模型来执行此操作,则:
library(datasets)
data(ChickWeight)
m1<-lmer(weight ~ Time + Diet+ (1|Chick), data=ChickWeight)
sm1<-sim(m1,1000)
smfixef=sm1@fixef
smfixef=as.mcmc(smfixef) #this has the 1000 simulations in it for the fixed effects
as.mcmc(smfixef)
Markov Chain Monte Carlo (MCMC) output:
Start = 1
End = 1000
Thinning interval = 1
(Intercept) Time Diet2 Diet3 Diet4
[1,] 17.52609243 8.381517 7.47169881 46.442343 19.7164997 #simulation 1
[2,] 16.52854430 8.859378 8.83279931 29.017547 25.4610474 #simulation 2
[3,] 4.00702870 8.830302 29.68309621 47.459395 35.1939344 #simulation 3
[4,] 16.44162722 8.599929 15.87393285 31.946265 33.7513144 #simulation 4
[5,] 21.07173579 8.596701 1.81909415 28.934133 19.0499998 #simulation 5
etc.
然后,对于每一列,您可以编码哪些模拟大于零或小于零:
p_Time=if_else(smfixef[,2]>0, 1,0) #Time variable (i.e., 2nd column)
由于Time
变量的点估计为正,因此您要计算该变量的估计低于零的次数:
sum_p_Time=sum(p_Time<1)
> sum_p_Time
0
在这种情况下,它表示所有估计均大于零,因此贝叶斯p值<0.001。这支持了仅查看点估计和95%可信区间(即Time
估计为8.80,95%可信区间为(8.38,9.06)时所看到的结果。 Time
对weight
有影响。