大熊猫:在数据框列中填充缺失的数据

时间:2019-04-05 13:40:47

标签: python pandas dataframe missing-data

我有以下pandas数据框:

import numpy as np
import pandas as pd
timestamps = [1, 14, 30]
data = dict(quantities=[1, 4, 9], e_quantities=[1, 2, 3])
df = pd.DataFrame(data=data, columns=data.keys(), index=timestamps)

如下所示:

    quantities  e_quantities
1            1             1
14           4             2
30           9             3

但是,timestamps应该从1到52:

index = pd.RangeIndex(1, 53)

以下行提供了缺少的timestamps

series_fill = pd.Series(np.nan, index=index.difference(df.index)).sort_index()

如何在这些缺少的时间戳上使quantitiese_quantities列具有NaN值?

我尝试过:

df = pd.concat([df, series_fill]).sort_index()

但是它添加了另一列(0)并交换了原始数据帧的顺序:

     0  e_quantities  quantities
1  NaN           1.0         1.0
2  NaN           NaN         NaN
3  NaN           NaN         NaN

感谢您的帮助。

1 个答案:

答案 0 :(得分:3)

我认为您正在寻找reindex

df=df.reindex(index)