为了尽量减少每次迭代的重复计算次数,我在计算方法中使用了一些额外的类变量,这些变量也用在compute_partials()中。
(请参见下面的代码片段,我的意思非常清楚。)
问题是;
在compute()之前是否有任何调用compute_partials()的情况。 与下面的代码类似,使用compute()和compute_partials()是否有任何风险(请参见这两种方法)
class MomentOfInertiaComp(ExplicitComponent):
def initialize(self):
self.options.declare('num_elements', types=int)
self.options.declare('b')
self.compcou=0
self.partcou =0
def setup(self):
num_elements = self.options['num_elements']
self.add_input('h', shape=num_elements)
self.add_output('I', shape=num_elements)
rows = np.arange(num_elements)
cols = np.arange(num_elements)
self.declare_partials('I', 'h', rows=rows, cols=cols)
def compute(self, inputs, outputs):
b = self.options['b']
# Instead of this line
# outputs['I'] = 1./12. * b * inputs['h'] ** 3
# these 2 lines are used
self.var=inputs['h'] ** 2
outputs['I'] = 1./12. * b * inputs['h'] * self.var
self.compcou += 1
def compute_partials(self, inputs, partials):
b = self.options['b']
self.partcou += 1
# instead of this
# partials['I', 'h'] = 1./4. * b * inputs['h'] ** 2
# this is used
partials['I', 'h'] = 1./4. * b * self.var
答案 0 :(得分:1)
Openmdao不保证在compute_partials之前调用compute。您需要假设它们是完全独立的。