我是机器学习和python的新手!我希望我的代码能够预测在我的情况下主要是汽车的对象。 当我启动脚本时,它运行平稳,但是在20张左右的图片后,由于内存泄漏,它使系统挂起。 我希望此脚本能够运行到我的整个数据库中,而该数据库远不止20张图片。
我尝试使用pympler跟踪器来跟踪哪些对象占用的内存最多-
这是我试图运行以预测图片中的对象的代码:
from imageai.Prediction import ImagePrediction
import os
import urllib.request
import mysql.connector
from pympler.tracker import SummaryTracker
tracker = SummaryTracker()
mydb = mysql.connector.connect(
host="localhost",
user="phpmyadmin",
passwd="anshu",
database="python_test"
)
counter = 0
mycursor = mydb.cursor()
sql = "SELECT id, image_url FROM `used_cars` " \
"WHERE is_processed = '0' AND image_url IS NOT NULL LIMIT 1"
mycursor.execute(sql)
result = mycursor.fetchall()
def dl_img(url, filepath, filename):
fullpath = filepath + filename
urllib.request.urlretrieve(url,fullpath)
for eachfile in result:
id = eachfile[0]
print(id)
filename = "image.jpg"
url = eachfile[1]
filepath = "/home/priyanshu/PycharmProjects/untitled/images/"
print(filename)
print(url)
print(filepath)
dl_img(url, filepath, filename)
execution_path = "/home/priyanshu/PycharmProjects/untitled/images/"
prediction = ImagePrediction()
prediction.setModelTypeAsResNet()
prediction.setModelPath( os.path.join(execution_path, "/home/priyanshu/Downloads/resnet50_weights_tf_dim_ordering_tf_kernels.h 5"))
prediction.loadModel()
predictions, probabilities = prediction.predictImage(os.path.join(execution_path, "image.jpg"), result_count=1)
for eachPrediction, eachProbability in zip(predictions, probabilities):
per = 0.00
label = ""
print(eachPrediction, " : ", eachProbability)
label = eachPrediction
per = eachProbability
print("Label: " + label)
print("Per:" + str(per))
counter = counter + 1
print("Picture Number: " + str(counter))
sql1 = "UPDATE used_cars SET is_processed = '1' WHERE id = '%s'" % id
sql2 = "INSERT into label (used_car_image_id, object_label, percentage) " \
"VALUE ('%s', '%s', '%s') " % (id, label, per)
print("done")
mycursor.execute(sql1)
mycursor.execute(sql2)
mydb.commit()
tracker.print_diff()
这是我从一张图片中得到的结果,并且经过一些迭代后它消耗了整个RAM。我该怎么做才能阻止泄漏?
seat_belt : 12.617655098438263
Label: seat_belt
Per:12.617655098438263
Picture Number: 1
done
types | objects | total size
<class 'tuple | 130920 | 11.98 MB
<class 'dict | 24002 | 6.82 MB
<class 'list | 56597 | 5.75 MB
<class 'int | 175920 | 4.70 MB
<class 'str | 26047 | 1.92 MB
<class 'set | 740 | 464.38 KB
<class 'tensorflow.python.framework.ops.Tensor | 6515 |
356.29 KB
<class 'tensorflow.python.framework.ops.Operation._InputList |
6097 | 333.43 KB
<class 'tensorflow.python.framework.ops.Operation | 6097 |
333.43 KB
<class 'SwigPyObject | 6098 | 285.84 KB
<class 'tensorflow.python.pywrap_tensorflow_internal.TF_Output |
4656 | 254.62 KB
<class 'tensorflow.python.framework.traceable_stack.TraceableObject | 3309 | 180.96 KB
<class 'tensorflow.python.framework.tensor_shape.Dimension |
1767 | 96.63 KB
<class 'tensorflow.python.framework.tensor_shape.TensorShapeV1 |
1298 | 70.98 KB
<class 'weakref | 807 | 63.05 KB
答案 0 :(得分:0)
看看这篇文章:Tracing python memory leaks
此外,请注意,garbage collection module实际上可以设置调试标志。查看set_debug
函数。此外,请查看this code by Gnibbler以确定呼叫后已创建的对象的类型。
答案 1 :(得分:0)
在这种情况下,每次在for循环中使用图像加载模型。该模型应位于for循环之外,在这种情况下,该模型不会每次都启动并且不会占用程序占用的内存。 代码应该以这种方式工作->
execution_path = "/home/priyanshu/PycharmProjects/untitled/images/"
prediction = ImagePrediction()
prediction.setModelTypeAsResNet()
prediction.setModelPath( os.path.join(execution_path, "/home/priyanshu/Downloads/resnet50_weights_tf_dim_ordering_tf_kernels.h 5"))
prediction.loadModel()
for eachfile in result:
id = eachfile[0]
print(id)
filename = "image.jpg"
url = eachfile[1]
filepath = "/home/priyanshu/PycharmProjects/untitled/images/"
print(filename)
print(url)
print(filepath)
dl_img(url, filepath, filename)
predictions, probabilities = prediction.predictImage(os.path.join(execution_path, "image.jpg"), result_count=1)
for eachPrediction, eachProbability in zip(predictions, probabilities):
per = 0.00
label = ""
print(eachPrediction, " : ", eachProbability)
label = eachPrediction
per = eachProbability
print("Label: " + label)
print("Per:" + str(per))
counter = counter + 1
print("Picture Number: " + str(counter))
sql1 = "UPDATE used_cars SET is_processed = '1' WHERE id = '%s'" % id
sql2 = "INSERT into label (used_car_image_id, object_label, percentage) " \
"VALUE ('%s', '%s', '%s') " % (id, label, per)
print("done")
mycursor.execute(sql1)
mycursor.execute(sql2)
mydb.commit()
tracker.print_diff()