当我尝试应用LDA的get_dummies()
方法时,为了训练和测试目的而拆分数据集后,我在数据集中应用了fit_transform()
方法。
ValueError:输入形状错误(26905,8)
我在做什么错?我不确定问题是由于get_dummies()
方法引起的还是我遗漏的其他问题
# Sample Code
df = pd.read_csv('/Users/rushirajparmar/Downloads/Problem 16 (1)/Problem 16/Problem 16/train_file.csv')
df.drop(['UsageClass','CheckoutType','CheckoutYear','CheckoutMonth'],axis = 1,inplace = True)
Y=pd.get_dummies(df,columns = ['MaterialType'])
X=pd.get_dummies(df,columns = ['Title','Creator','Subjects','Publisher','PublicationYear'])
X.drop(['MaterialType'],axis = 1,inplace = True)
Y.drop(['ID','Checkouts','Title','Creator','Subjects','Publisher','PublicationYear'],axis = 1,inplace = True)
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size = 0.15)
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA
lda = LDA(n_components = 1)
X_train = lda.fit_transform(X_train, y_train)
X_test = lda.transform(X_test)
这里是train_file.csv供参考
答案 0 :(得分:1)
您不必将get_dummies应用于目标变量。您可以直接将多类别标签提供给LDA
。
fit_transform(X,y = None,** fit_params)
适合数据,然后 对其进行转换。
使用可选参数fit_params和 返回X的转换版本。
参数:
X: numpy形状的数组[n_samples,n_features]训练 设置。y:形状为[n_samples]个目标值的numpy数组。
返回值:X_new:形状为[n_samples,n_features_new]的numpy数组 转换后的数组。
因此,您的y
必须是一维的。
X_train, X_test, y_train, y_test = train_test_split(X, df['MaterialType'], test_size = 0.15)
lda = LDA(n_components = 1)
X_train = lda.fit_transform(X_train, y_train)