我在空间上有n
个点:
points.shape == (n,3)
我有一个新的坐标系,该坐标系由点O = [ox, oy, oz]
和3个不同长度的正交向量Ox = [oxx, oxy, oxz], Oy = [oyx, oyy, oyz], Oz = [ozx, ozy, ozz]
定义。
如何编写这样的函数?
def change_coord_system(points, O, Ox, Oy, Oz)
return # points in new coordinate system
答案 0 :(得分:2)
您在原始系统中有4个非共面点(lx
是第一个向量的长度,依此类推):
(0,0,0), (lx,0,0), (0,ly,0), (0,0,lz)
和他们的双胞胎在新系统中
[ox, oy, oz]
[oxx + ox, oxy + oy, oxz + oz]
[oyx + ox, oyy + oy, oyz + oz]
[ozx + ox, ozy + oy, ozz + oz]
仿射变换矩阵A应该将初始点变换为对点
A * P = P'
使用点列向量制作矩阵:
|x1 x2 x3 x4| |x1' x2' x3' x4'|
A *|y1 y2 y3 y4| = |y1' y2' y3' y4'|
|z1 z2 z3 z4| |z1' z2' z3' z4'|
|1 1 1 1| |1 1 1 1|
|0 lx 0 0| |ox oxx + ox . .|
A *|0 0 ly 0| = |oy oxy + oy . .| // lazy to make last columns
|0 0 0 lz| |oz oxz + oz . .|
|1 1 1 1| |1 1 1 1|
要计算A,需要将两个母数乘以P矩阵的逆数
A * P * P-1 = P' * Pinverse
A * E = P' * Pinverse
A = P' * Pinverse
因此,计算P的逆矩阵并将其与右侧矩阵相乘。
编辑:由Maple计算的逆矩阵为
[[-1/lx, -1/ly, -1/lz, 1],
[1/lx, 0, 0, 0],
[0, 1/ly, 0, 0],
[0, 0, 1/lz, 0]]
得到的仿射变换矩阵为
[[-ox/lx+(oxx+ox)/lx, -ox/ly+(oyx+ox)/ly, -ox/lz+(ozx+ox)/lz, ox],
[-oy/lx+(oxy+oy)/lx, -oy/ly+(oyy+oy)/ly, -oy/lz+(ozy+oy)/lz, oy],
[-oz/lx+(oxz+oz)/lx, -oz/ly+(oyz+oz)/ly, -oz/lz+(ozz+oz)/lz, oz],
[0, 0, 0, 1]]
Maple sheet view for reference
修改:
刚刚注意到:Maple没有删除过多的求幂,所以结果应该更简单:
[[(oxx)/lx, (oyx)/ly, (ozx)/lz, ox],
[(oxy)/lx, (oyy)/ly, (ozy)/lz, oy],
[(oxz)/lx, (oyz)/ly, (ozz)/lz, oz],
[0, 0, 0, 1]]
答案 1 :(得分:1)