客户具有多个订阅时,该客户被复制。 我想为整个客户状态而不是为每个订阅生成一个new_status: 给已重新激活订阅的客户 以及已取消一个订阅但仍具有另一个有效订阅的客户。
df:
Customer | Status | Canceled_at | Created | New_status
X | Active | |8/9/2017 |
X |Canceled | 8/3/2017 |6/19/2017 |
Y | Active | |2/13/2019 |
Y |Canceled | 11/28/2018 |10/14/2018|
Z | Active | |3/29/2018 |
Z |Canceled | 8/8/2018 |7/10/2018 |
A |Canceled | 9/2/2018 |7/10/2018 |
A |Canceled | 9/29/2018 |7/12/2018 |
A |Active | |5/31/2018 |
这些情况的条件是: 如果已取消重复的“取消日期”>活动日期的“创建”日期:新的_status将为“降级” 如果已取消重复的“ canceled_at”日期< 有效:new_status将为“重新激活”
所需的输出:
Customer | Status | Canceled_at | Created | New_status
X | Active | |8/9/2017 |Reactivate
X |Canceled | 8/3/2017 |6/19/2017 |Reactivate
Y | Active | |2/13/2019 |Reactivate
Y |Canceled | 11/28/2018 |10/14/2018|Reactivate
Z | Active | |3/29/2018 |Downgrade
Z |Canceled | 8/8/2018 |7/10/2018 |Downgrade
A |Canceled | 9/2/2018 |7/10/2018 |Downgrade
A |Canceled | 9/29/2018 |7/12/2018 |Downgrade
A |Active | |5/31/2018 |Downgrade
答案 0 :(得分:1)
我太新了,无法评论,但是我需要更多信息,为什么“ Y”个客户重新激活?也许我不理解您的解释,因为客户“ A”处于类似情况,而您给了它“降级”。也许只是重新输入您的问题,但装作一个8岁的孩子即可阅读(我)。
这是您想要的代码,它可以工作:
#convert columns to dates
df['Canceled_at'] = pd.to_datetime(df['Canceled_at'])
df['Created'] = pd.to_datetime(df['Created'])
#make customer a list so we can loop through it
customer = list(df['Customer'].drop_duplicates())
#super awesome for loop that give us the largest date (this is the part where maybe your logic is different than what I read it as)
for c in customer:
df.loc[(df['Customer'] == c), 'Most Recent Cancel'] = df.loc[(df['Customer'] == c)]['Canceled_at'].max()
df.loc[(df['Customer'] == c), 'Most Recent Created'] = df.loc[(df['Customer'] == c)]['Created'].max()
#Make 'New_status' column
df.loc[(df['Most Recent Created'] > df['Most Recent Cancel']), 'New_status'] = 'Reactivate'
df.loc[(df['New_status'] != 'Reactivate'), 'New_status'] = 'Downgrade'