通过不同列在重复值之间有条件

时间:2019-03-19 18:50:18

标签: python pandas apply loc

客户具有多个订阅时,该客户被复制。 我想为整个客户状态而不是为每个订阅生成一个new_status: 给已重新激活订阅的客户 以及已取消一个订阅但仍具有另一个有效订阅的客户。

df:

Customer | Status  | Canceled_at | Created  | New_status
 X       | Active  |             |8/9/2017  |
 X       |Canceled |  8/3/2017   |6/19/2017 |             
 Y       | Active  |             |2/13/2019 |
 Y       |Canceled | 11/28/2018  |10/14/2018|
 Z       | Active  |             |3/29/2018 |
 Z       |Canceled | 8/8/2018    |7/10/2018 |
 A       |Canceled | 9/2/2018    |7/10/2018 |          
 A       |Canceled | 9/29/2018   |7/12/2018 |
 A       |Active   |             |5/31/2018 |

这些情况的条件是: 如果已取消重复的“取消日期”>活动日期的“创建”日期:新的_status将为“降级” 如果已取消重复的“ canceled_at”日期< 有效:new_status将为“重新激活”

所需的输出:

Customer | Status  | Canceled_at | Created  | New_status
 X       | Active  |             |8/9/2017  |Reactivate
 X       |Canceled |  8/3/2017   |6/19/2017 |Reactivate              
 Y       | Active  |             |2/13/2019 |Reactivate
 Y       |Canceled | 11/28/2018  |10/14/2018|Reactivate
 Z       | Active  |             |3/29/2018 |Downgrade
 Z       |Canceled | 8/8/2018    |7/10/2018 |Downgrade
 A       |Canceled | 9/2/2018    |7/10/2018 |Downgrade           
 A       |Canceled | 9/29/2018   |7/12/2018 |Downgrade
 A       |Active   |             |5/31/2018 |Downgrade

1 个答案:

答案 0 :(得分:1)

我太新了,无法评论,但是我需要更多信息,为什么“ Y”个客户重新激活?也许我不理解您的解释,因为客户“ A”处于类似情况,而您给了它“降级”。也许只是重新输入您的问题,但装作一个8岁的孩子即可阅读(我)。

这是您想要的代码,它可以工作:

#convert columns to dates
df['Canceled_at'] = pd.to_datetime(df['Canceled_at'])
df['Created'] = pd.to_datetime(df['Created'])

#make customer a list so we can loop through it
customer = list(df['Customer'].drop_duplicates())

#super awesome for loop that give us the largest date (this is the part where maybe your logic is different than what I read it as)
for c in customer:
    df.loc[(df['Customer'] == c), 'Most Recent Cancel'] = df.loc[(df['Customer'] == c)]['Canceled_at'].max()
    df.loc[(df['Customer'] == c), 'Most Recent Created'] = df.loc[(df['Customer'] == c)]['Created'].max()

#Make 'New_status' column
df.loc[(df['Most Recent Created'] > df['Most Recent Cancel']), 'New_status'] = 'Reactivate'
df.loc[(df['New_status'] != 'Reactivate'), 'New_status'] = 'Downgrade'