我有一个数据框df
,我需要根据条件对多列进行分组。
df
user_id area_id group_id key year value new
10835 48299 1 5 2011 0 ?
10835 48299 1 2 2010 0
10835 48299 2 102 2013 13100
10835 48299 2 5 2016 0
10836 48299 1 78 2017 67100
10836 48299 1 1 2012 54000
10836 48299 1 12 2018 0
10836 48752 1 7 2014 0
10836 48752 2 103 2015 5000
10837 48752 2 102 2016 5000
10837 48752 1 3 2017 0
10837 48752 1 103 2017 0
10837 49226 1 2 2011 4000
10837 49226 1 83 2011 4000
10838 49226 2 16 2011 0
10838 49226 1 75 2012 0
10838 49226 1 2 2012 4000
10838 49226 1 12 2013 1000
10839 49226 1 3 2015 6500
10839 49226 1 102 2016 7900
10839 49226 1 16 2017 0
10839 49226 2 6 2017 5500
22489 49226 2 89 2017 5000
22489 49226 1 102 2017 5000
我的目标是创建一个新列df['new']
当前解决方案:
df['new'] =df['user_id'].map(df[df['key'].eq(102)].groupby(['user_id', 'area_id', 'group_id', 'year'])['value'].sum())
对于所有NaN
值,我得到df['new']
。我猜想不可能使用map function
以此方式对多列进行分组。是否有适当的方法来实现这一目标?预先感谢您指出正确的方向。
答案 0 :(得分:1)
您可以为新的as_index=False
添加DataFrame
:
df1 = (df[df['key'].eq(102)]
.groupby(['user_id', 'area_id', 'group_id', 'year'], as_index=False)['value']
.sum())
print (df1)
user_id area_id group_id year value
0 10835 48299 2 2013 13100
1 10837 48752 2 2016 5000
2 10839 49226 1 2016 7900
3 22489 49226 1 2017 5000
然后,如有可能,重复的user_id
首先由DataFrame.drop_duplicates
获得唯一行,由DataFrame.set_index
和Series
创建map
:
df['new'] = df['user_id'].map(df1.drop_duplicates('user_id').set_index('user_id')['value'])
#if never duplicates
#df['new'] = df['user_id'].map(df1.set_index('user_id')['value'])
print (df)
user_id area_id group_id key year value new
0 10835 48299 1 5 2011 0 13100.0
1 10835 48299 1 2 2010 0 13100.0
2 10835 48299 2 102 2013 13100 13100.0
3 10835 48299 2 5 2016 0 13100.0
4 10836 48299 1 78 2017 67100 NaN
5 10836 48299 1 1 2012 54000 NaN
6 10836 48299 1 12 2018 0 NaN
7 10836 48752 1 7 2014 0 NaN
8 10836 48752 2 103 2015 5000 NaN
9 10837 48752 2 102 2016 5000 5000.0
10 10837 48752 1 3 2017 0 5000.0
11 10837 48752 1 103 2017 0 5000.0
12 10837 49226 1 2 2011 4000 5000.0
13 10837 49226 1 83 2011 4000 5000.0
14 10838 49226 2 16 2011 0 NaN
15 10838 49226 1 75 2012 0 NaN
16 10838 49226 1 2 2012 4000 NaN
17 10838 49226 1 12 2013 1000 NaN
18 10839 49226 1 3 2015 6500 7900.0
19 10839 49226 1 102 2016 7900 7900.0
20 10839 49226 1 16 2017 0 7900.0
21 10839 49226 2 6 2017 5500 7900.0
22 22489 49226 2 89 2017 5000 5000.0
23 22489 49226 1 102 2017 5000 5000.0