我有如下数据:
{'grp': {0: 828893, 1: 828893, 2: 828893, 3: 828893, 4: 828893, 5: 828893, 6: 828893, 7: 828893, 8: 828893, 9: 828893, 10: 828893, 11: 828893, 12: 828893, 13: 828893, 14: 828893, 15: 828893, 16: 828893, 17: 828893, 18: 828893, 19: 828893, 20: 828893, 21: 828893, 22: 828893, 23: 828893, 24: 828893}, 'grp2': {0: nan, 1: nan, 2: nan, 3: nan, 4: '1', 5: '1', 6: '1', 7: '1', 8: '1', 9: '1', 10: nan, 11: nan, 12: '2', 13: '2', 14: '2', 15: '2', 16: nan, 17: nan, 18: nan, 19: '3', 20: nan, 21: '4', 22: '4', 23: '4', 24: '4'}, 'val1': {0: -50.0, 1: -50.0, 2: -50.0, 3: -50.0, 4: 7.600000000000001, 5: 54.599999999999994, 6: 38.599999999999994, 7: 50.599999999999994, 8: 91.0, 9: 100.80000000000001, 10: 19.200000000000003, 11: -50.0, 12: -50.0, 13: 69.6, 14: 42.0, 15: 90.19999999999999, 16: -50.0, 17: -50.0, 18: 47.599999999999994, 19: 98.80000000000001, 20: 27.599999999999994, 21: 11.799999999999997, 22: nan, 23: 13.0, 24: 0.0}, 'val2': {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 30.1, 5: 21.5, 6: 20.7, 7: 4.2, 8: 5.0, 9: 21.6, 10: 85.1, 11: 0.0, 12: 0.0, 13: 36.4, 14: 56.6, 15: 51.2, 16: 0.0, 17: 0.0, 18: 58.5, 19: 42.2, 20: 76.1, 21: 68.7, 22: nan, 23: 90.3, 24: 95.3}}
我想先按列grp
和grp2
对其进行分组,然后创建一个新列val1_b
和val2_b
定义为最后一次观察与第一次观察之间的差异(在一组)分别来自val1
和val2
。 R中的代码类似于:
ex %>%
group_by(grp, grp2) %>%
mutate(val1_b = last(val1) - first(val1),
val2_b = last(val2) - first(val2)) %>%
ungroup()
但是我需要在Python中完成。我能得到的最接近的是:
pd.DataFrame(ex).groupby(['grp', 'grp2'])['val1'].apply(lambda x: x.iat[-1] - x.iat[0])
但是这仅适用于一列,结果是汇总的,而不是添加到现有的数据框中。因此,如何计算一组中最后几观察与第一观察之间的差异,并将其作为新列添加到现有数据框中?
答案 0 :(得分:2)
将GroupBy.transform
与GroupBy.first
一起使用,
GroupBy.last
,一种可能的解决方案,其中有DataFrame.add_prefix
和DataFrame.join
用于新列:
df = pd.DataFrame(ex)
#columns for processing defined after groupby
g = df.groupby(['grp', 'grp2'])['val1', 'val2']
out = df.join((g.transform('last') - g.transform('first')).add_prefix('new_'))
可能没有评论join
,就像评论中提到的@ Wen-Ben一样(谢谢):
df[['new_val1', 'new_val2']] = g.transform('last') - g.transform('first')
print (out)
grp grp2 val1 val2 new_val1 new_val2
0 828893 NaN -50.0 0.0 NaN NaN
1 828893 NaN -50.0 0.0 NaN NaN
2 828893 NaN -50.0 0.0 NaN NaN
3 828893 NaN -50.0 0.0 NaN NaN
4 828893 1 7.6 30.1 93.2 -8.5
5 828893 1 54.6 21.5 93.2 -8.5
6 828893 1 38.6 20.7 93.2 -8.5
7 828893 1 50.6 4.2 93.2 -8.5
8 828893 1 91.0 5.0 93.2 -8.5
9 828893 1 100.8 21.6 93.2 -8.5
10 828893 NaN 19.2 85.1 NaN NaN
11 828893 NaN -50.0 0.0 NaN NaN
12 828893 2 -50.0 0.0 140.2 51.2
13 828893 2 69.6 36.4 140.2 51.2
14 828893 2 42.0 56.6 140.2 51.2
15 828893 2 90.2 51.2 140.2 51.2
16 828893 NaN -50.0 0.0 NaN NaN
17 828893 NaN -50.0 0.0 NaN NaN
18 828893 NaN 47.6 58.5 NaN NaN
19 828893 3 98.8 42.2 0.0 0.0
20 828893 NaN 27.6 76.1 NaN NaN
21 828893 4 11.8 68.7 -11.8 26.6
22 828893 4 NaN NaN -11.8 26.6
23 828893 4 13.0 90.3 -11.8 26.6
24 828893 4 0.0 95.3 -11.8 26.6
答案 1 :(得分:1)
您的意思是R中的mutate
,这里pandas
中的是transform
df=pd.DataFrame(ex)
g=df.groupby(['grp', 'grp2'])
df['val1_b']=g['val1'].transform('first')-g['val1'].transform('last')
df['val2_b']=g['val2'].transform('first')-g['val1'].transform('last')