我正在使用CountVectorizer
来获取字符串列表中的单词列表
from sklearn.feature_extraction.text import CountVectorizer
raw_text = [
'The dog hates the black cat',
'The black dog is good'
]
raw_text = [x.lower() for x in raw_text]
vocabulary = vectorizer.vocabulary_
vocabulary = dict((v, k) for k, v in vocabulary.iteritems())
vocabulary
在词汇表中,我有以下正确的数据
{0: u'black', 1: u'cat', 2: u'dog', 3: u'good', 4: u'hates', 5: u'is', 6: u'the'}
我现在想要获得的是将原始句子“映射”到这些新值,例如:
expected_output = [
[6, 2, 4, 6, 0, 1],
[6, 0, 2, 5, 3]
]
我曾尝试浏览Sklearn文档,但实际上找不到任何能做到这一点的方法,而且我什至不知道我要执行的操作的正确术语,因此在Google中找不到任何结果。
有什么办法可以达到这个结果?
答案 0 :(得分:3)
按如下方式查找每个单词:
from sklearn.feature_extraction.text import CountVectorizer
raw_text = [
'The dog hates the black cat',
'The black dog is good'
]
cv = CountVectorizer()
cv.fit_transform(raw_text)
vocab = cv.vocabulary_.copy()
def lookup_key(string):
s = string.lower()
return [vocab[w] for w in s.split()]
list(map(lookup_key, raw_text))
出局:
[[6, 2, 4, 6, 0, 1], [6, 0, 2, 5, 3]]
答案 1 :(得分:2)
您可以尝试以下方法吗?
mydict = {0: u'black', 1: u'cat', 2: u'dog',
3: u'good', 4: u'hates', 5: u'is', 6: u'the'}
def get_val_key(val):
return list(mydict.keys())[list(mydict.values()).index(val.lower())]
raw_text = [
'The dog hates the black cat',
'The black dog is good'
]
expected_output = [list(map(get_val_key, text.split())) for text in raw_text]
print(expected_output)
输出:
[[6, 2, 4, 6, 0, 1], [6, 0, 2, 5, 3]]
答案 2 :(得分:1)
我认为您可以只适合文本内容来构建词汇表,然后使用build_analyzer()
from sklearn.feature_extraction.text import CountVectorizer
raw_text = [
'The dog hates the black cat',
'The black dog is good'
]
vectorizer = CountVectorizer()
vectorizer.fit(raw_text)
analyzer = vectorizer.build_analyzer()
[[vectorizer.vocabulary_[i] for i in analyzer(doc)] for doc in raw_text]
输出:
[[6,2,4,6,0,1],[6,0,2,5,5]]