Pyspark-拆分一列并采用n个元素

时间:2019-03-13 13:27:59

标签: apache-spark pyspark apache-spark-sql pyspark-sql

我想取一列并使用字符分割字符串。像往常一样,我知道方法split将返回一个列表,但是在编码时,我发现返回的对象仅具有方法getItem或getField,并具有API中的以下描述:

@since(1.3)   
def getItem(self, key):
    """
    An expression that gets an item at position ``ordinal`` out of a list,
    or gets an item by key out of a dict.


@since(1.3)
def getField(self, name):
    """
    An expression that gets a field by name in a StructField.

很明显,这不符合我的要求,例如对于“ A_B_C_D”列中的文本,我想在两个不同的列中将“ A_B_C_”和“ D”之间分开。

这是我正在使用的代码

from pyspark.sql.functions import regexp_extract, col, split
df_test=spark.sql("SELECT * FROM db_test.table_test")
#Applying the transformations to the data

split_col=split(df_test['Full_text'],'_')
df_split=df_test.withColumn('Last_Item',split_col.getItem(3))

查找示例:

from pyspark.sql import Row
from pyspark.sql.functions import regexp_extract, col, split
l = [("Item1_Item2_ItemN"),("FirstItem_SecondItem_LastItem"),("ThisShouldBeInTheFirstColumn_ThisShouldBeInTheLastColumn")]
rdd = sc.parallelize(l)
datax = rdd.map(lambda x: Row(fullString=x))
df = sqlContext.createDataFrame(datax)
split_col=split(df['fullString'],'_')
df=df.withColumn('LastItemOfSplit',split_col.getItem(2))

结果:

fullString                                                LastItemOfSplit
Item1_Item2_ItemN                                            ItemN
FirstItem_SecondItem_LastItem                                LastItem
ThisShouldBeInTheFirstColumn_ThisShouldBeInTheLastColumn     null

我的预期结果是总是有最后一个项目

fullString                                                LastItemOfSplit
Item1_Item2_ItemN                                            ItemN
FirstItem_SecondItem_LastItem                                LastItem
ThisShouldBeInTheFirstColumn_ThisShouldBeInTheLastColumn  ThisShouldBeInTheLastColumn

2 个答案:

答案 0 :(得分:2)

您可以使用getItem(size - 1)从数组中获取最后一项:

示例

df = spark.createDataFrame([[['A', 'B', 'C', 'D']], [['E', 'F']]], ['split'])
df.show()
+------------+
|       split|
+------------+
|[A, B, C, D]|
|      [E, F]|
+------------+

import pyspark.sql.functions as F
df.withColumn('lastItem', df.split.getItem(F.size(df.split) - 1)).show()
+------------+--------+
|       split|lastItem|
+------------+--------+
|[A, B, C, D]|       D|
|      [E, F]|       F|
+------------+--------+

针对您的情况:

from pyspark.sql.functions import regexp_extract, col, split, size
df_test=spark.sql("SELECT * FROM db_test.table_test")
#Applying the transformations to the data

split_col=split(df_test['Full_text'],'_')
df_split=df_test.withColumn('Last_Item',split_col.getItem(size(split_col) - 1))

答案 1 :(得分:0)

您可以将正则表达式模式传递给split

以下将适用于您的示例:

from pyspark.sql.functions split

split_col=split(df['fullString'], r"_(?=.+$)")
df = df.withColumn('LastItemOfSplit', split_col.getItem(1))
df.show(truncate=False)
#+--------------------------------------------------------+---------------------------+
#|fullString                                              |LastItemOfSplit            |
#+--------------------------------------------------------+---------------------------+
#|Item1_Item2_ItemN                                       |Item2                      |
#|FirstItem_SecondItem_LastItem                           |SecondItem                 |
#|ThisShouldBeInTheFirstColumn_ThisShouldBeInTheLastColumn|ThisShouldBeInTheLastColumn|
#+--------------------------------------------------------+---------------------------+

该模式的含义如下:

  • _文字下划线
  • (?=.+$)对所有内容(.)的正向搜索,直到字符串$的结尾

这将在最后一个下划线处分割字符串。然后调用.getItem(1)以使该项目在结果列表中的索引1处。