这是一个片段,主要由@ptrblck
在Pytorch论坛中提供,用于对某些图像进行数据增强。
任务是分割,所以我认为图像及其对应的蒙版需要增加。
我想知道如何在变换后显示一些图像并对应蒙版,以找出它们的外观?
这是脚本:
import torch
from torch.utils.data.dataset import Dataset # For custom data-sets
import torchvision.transforms as transforms
import torchvision.transforms.functional as tf
from PIL import Image
import numpy
import glob
import matplotlib.pyplot as plt
from split_dataset import test_loader
import os
class CustomDataset(Dataset):
def __init__(self, image_paths, target_paths, transform_images, transform_masks):
self.image_paths = image_paths
self.target_paths = target_paths
self.transform_images = transform_images
self.transform_masks = transform_masks
self.transformm = transforms.Compose([transforms.Lambda(lambda x: tf.rotate(x, 10)),
transforms.Lambda(lambda x: tf.affine(x, angle=0,
translate=(0, 0),
scale=0.2,
shear=0.2))
])
self.transform = transforms.ToTensor()
self.mapping = {
0: 0,
255: 1
}
def mask_to_class(self, mask):
for k in self.mapping:
mask[mask==k] = self.mapping[k]
return mask
def __getitem__(self, index):
image = Image.open(self.image_paths[index])
mask = Image.open(self.target_paths[index])
if any([img in self.image_paths[index] for img in self.transform_images]):
print('applying special transformation')
image = self.transformm(image) #augmentation
if any([msk in self.target_paths[index] for msk in self.transform_masks]):
print('applying special transformation')
image = self.transformm(mask) #augmentation
t_image = image.convert('L')
t_image = self.transform(t_image) # transform to tensor for image
mask = self.transform(mask) # transform to tensor for mask
mask = torch.from_numpy(numpy.array(mask, dtype=numpy.uint8))
mask = self.mask_to_class(mask)
mask = mask.long()
return t_image, mask, self.image_paths[index], self.target_paths[index]
def __len__(self): # return count of sample we have
return len(self.image_paths)
image_paths = glob.glob("D:\\Neda\\Pytorch\\U-net\\my_data\\imagesResized\\*.png")
target_paths = glob.glob("D:\\Neda\\Pytorch\\U-net\\my_data\\labelsResized\\*.png")
transform_images = ['image_981.png', 'image_982.png','image_983.png', 'image_984.png', 'image_985.png',
'image_986.png','image_987.png','image_988.png','image_989.png','image_990.png',
'image_991.png'] # apply special transformation only on these images
print(transform_images)
#['image_991.png', 'image_991.png']
transform_masks = ['image_labeled_981.png', 'image_labeled_982.png','image_labeled_983.png', 'image_labeled_984.png',
'image_labeled_985.png', 'image_labeled_986.png','image_labeled_987.png','image_labeled_988.png',
'image_labeled_989.png','image_labeled_990.png',
'image_labeled_991.png']
dataset = CustomDataset(image_paths, target_paths, transform_images, transform_masks)
for transform_images in dataset:
#print(transform_images)
transform_images = Image.open(os.path.join(image_paths, transform_images))
transform_images = numpy.array(transform_images)
transform_masks = Image.open(os.path.join(target_paths, transform_masks))
transform_masks = numpy.array(transform_masks)
fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=1, sharex=True, sharey=True, figsize = (6,6))
img1 = ax1.imshow(transform_images, cmap='gray')
ax1.axis('off')
img2 = ax2.imshow(transform_masks)
ax1.axis('off')
plt.show()
当前正在导致错误
path = os.fspath(path)
TypeError:预期的str,字节或os.PathLike对象,而不是元组
答案 0 :(得分:0)
glob.glob
返回与输入匹配的路径名列表。您正在使用它,就像它是一条路径一样。您可以采用基本路径并将其与您的图像名称结合在一起。
我还建议不要在for循环中重用变量名transform_images
。我分别将其重命名为current_image
和current_mask
。
这是修改后的代码:
basePath = 'D:\\Neda\\Pytorch\\U-net\\my_data\\imagesResized\\'
image = Image.open(os.path.join(basePath, current_image))
[...]
targetPath = 'D:\\Neda\\Pytorch\\U-net\\my_data\\labelsResized\\'
mask = Image.open(os.path.join(targetPath, current_mask))