我有以下问题。
mtx =[['0','q'],
['0','e'],
['1','q'],
['1','w'],
['2','r'],
['2','e'],
['2','w'],
['3','t'],
['4','y']]
df10 = pd.DataFrame(np.insert(mtx, 2, np.random.rand(len(mtx))*10, axis=1),
columns=['id','cat','val'])
我想
即结果将具有以下形式。
mtx1 = [[el1, el] for el in 'qwerty' for el1 in '01234']
df11 = pd.DataFrame(np.insert(mtx1, 2, '-', axis=1),
columns=['id','cat','val'])
>>>
[['0' 'q' '-']
['1' 'q' '-']
['2' 'q' '-']
['3' 'q' '-']
['4' 'q' '-']
['0' 'w' '-']
['1' 'w' '-']
['2' 'w' '-']
['3' 'w' '-']
['4' 'w' '-']
['0' 'e' '-']
['1' 'e' '-']
['2' 'e' '-']
['3' 'e' '-']
['4' 'e' '-']
['0' 'r' '-']
['1' 'r' '-']
['2' 'r' '-']
['3' 'r' '-']
['4' 'r' '-']
['0' 't' '-']
['1' 't' '-']
['2' 't' '-']
['3' 't' '-']
['4' 't' '-']
['0' 'y' '-']
['1' 'y' '-']
['2' 'y' '-']
['3' 'y' '-']
['4' 'y' '-']]
对于-
,应该有func
应用或为0的结果。
可以在熊猫中惯用地执行这种操作吗?与.groupby
?我只能想到手动创建叉积,然后检查原始df10
是否存在组合,然后应用func
或在原始{{ 1}}。