<tensorflow object =“” detection =“”> TypeError:resize_images()得到了意外的关键字参数'preserve_aspect_ratio'

时间:2019-03-12 05:24:38

标签: python tensorflow object-detection object-detection-api

cuda 9.0
cudnn 7.5
python 3.5.2
tensorflow-gpu 1.8

我不知道错误发生在哪里,我也尝试了python 3.6.3。也将发生此错误。请帮忙。

我正在训练model_main.py文件,但是出现以下错误。

python model_main.py --model_dir=F:/cindy/cindybackup/tensorflow1/test/training -pipeline_config_path=F:/cindy/cindybackup/tensorflow1/test/data/faster_rcnn_inception_v2_pets.config --alsologtostderr --num_train_steps=1000 --num_eval_steps=10

它显示以下内容:

  

警告:tensorflow:所有评估的强制时期数   是1。       警告:tensorflow:估计的评估时期数为1,但遇到eval_on_train_input_config.num_epochs = 0。   将num_epochs覆盖为1。       警告:tensorflow:使用临时文件夹作为模型目录:C:\ Users \ wyh \ AppData \ Local \ Temp \ tmplh3q4jn2       警告:tensorflow:估计器的model_fn(.model_fn位于0x00000256FF7F1400>)包括   params参数,但不会将参数传递给Estimator。       警告:tensorflow:num_readers已减少为1以匹配输入文件分片。       追溯(最近一次通话):         文件“ model_main.py”,行109,在           tf.app.run()         文件“ C:\ Users \ wyh \ AppData \ Local \ conda \ conda \ envs \ py352 \ lib \ site-packages \ tensorflow \ python \ platform \ app.py”,   126行           _sys.exit(main(argv))         主文件中的文件“ model_main.py”,第105行           tf.estimator.train_and_evaluate(estimator,train_spec,eval_specs [0])         文件“ C:\ Users \ wyh \ AppData \ Local \ conda \ conda \ envs \ py352 \ lib \ site-packages \ tensorflow \ python \ estimator \ training.py”,   在train_and_evaluate中的第439行           executor.run()         文件“ C:\ Users \ wyh \ AppData \ Local \ conda \ conda \ envs \ py352 \ lib \ site-packages \ tensorflow \ python \ estimator \ training.py”,   518行,正在运行           self.run_local()         文件“ C:\ Users \ wyh \ AppData \ Local \ conda \ conda \ envs \ py352 \ lib \ site-packages \ tensorflow \ python \ estimator \ training.py”,   第650行,在run_local中           钩子= train_hooks)         文件“ C:\ Users \ wyh \ AppData \ Local \ conda \ conda \ envs \ py352 \ lib \ site-packages \ tensorflow \ python \ estimator \ estimator.py”,   火车上的363号线           损失= self._train_model(input_fn,钩子,Saving_listeners)         文件“ C:\ Users \ wyh \ AppData \ Local \ conda \ conda \ envs \ py352 \ lib \ site-packages \ tensorflow \ python \ estimator \ estimator.py”,   _train_model中的第843行           返回self._train_model_default(input_fn,hooks,saving_listeners)         文件“ C:\ Users \ wyh \ AppData \ Local \ conda \ conda \ envs \ py352 \ lib \ site-packages \ tensorflow \ python \ estimator \ estimator.py”,   _train_model_default中的第853行           input_fn,model_fn_lib.ModeKeys.TRAIN))         文件“ C:\ Users \ wyh \ AppData \ Local \ conda \ conda \ envs \ py352 \ lib \ site-packages \ tensorflow \ python \ estimator \ estimator.py”,   _get_features_and_labels_from_input_fn中的第691行           结果= self._call_input_fn(input_fn,模式)         文件“ C:\ Users \ wyh \ AppData \ Local \ conda \ conda \ envs \ py352 \ lib \ site-packages \ tensorflow \ python \ estimator \ estimator.py”,   _call_input_fn中的第798行           返回input_fn(** kwargs)         文件“ F:\ cindy \ cindybackup \ tensorflow1 \ models \ research \ object_detection \ inputs.py”,   _train_input_fn中的第525行           batch_size = params ['batch_size'],如果参数则为train_config.batch_size)         文件“ F:\ cindy \ cindybackup \ tensorflow1 \ models \ research \ object_detection \ builders \ dataset_builder.py”,   149行,正在构建           数据集= data_map_fn(process_fn,num_parallel_calls = num_parallel_calls)         文件“ C:\ Users \ wyh \ AppData \ Local \ conda \ conda \ envs \ py352 \ lib \ site-packages \ tensorflow \ python \ data \ ops \ dataset_ops.py”,   地图中的853行           返回ParallelMapDataset(self,map_func,num_parallel_calls)         文件“ C:\ Users \ wyh \ AppData \ Local \ conda \ conda \ envs \ py352 \ lib \ site-packages \ tensorflow \ python \ data \ ops \ dataset_ops.py”,   第1870行,在 init 中           超级(ParallelMapDataset,self)。初始化(input_dataset,map_func)         文件“ C:\ Users \ wyh \ AppData \ Local \ conda \ conda \ envs \ py352 \ lib \ site-packages \ tensorflow \ python \ data \ ops \ dataset_ops.py”,   第1839行,在 init 中           self._map_func.add_to_graph(ops.get_default_graph())         文件“ C:\ Users \ wyh \ AppData \ Local \ conda \ conda \ envs \ py352 \ lib \ site-packages \ tensorflow \ python \ framework \ function.py”,   add_to_graph中的第484行           self._create_definition_if_needed()         文件“ C:\ Users \ wyh \ AppData \ Local \ conda \ conda \ envs \ py352 \ lib \ site-packages \ tensorflow \ python \ framework \ function.py”,   _create_definition_if_needed中的第319行           self._create_definition_if_needed_impl()         文件“ C:\ Users \ wyh \ AppData \ Local \ conda \ conda \ envs \ py352 \ lib \ site-packages \ tensorflow \ python \ framework \ function.py”,   _create_definition_if_needed_impl中的第336行           输出= self._func(* inputs)         文件“ C:\ Users \ wyh \ AppData \ Local \ conda \ conda \ envs \ py352 \ lib \ site-packages \ tensorflow \ python \ data \ ops \ dataset_ops.py”,   tf_map_func中的1804行           ret = map_func(nested_args)         文件“ F:\ cindy \ cindybackup \ tensorflow1 \ models \ research \ object_detection \ builders \ dataset_builder.py”,   第130行,在process_fn中           已处理的张量= transform_input_data_fn(已处理的张量)         文件“ F:\ cindy \ cindybackup \ tensorflow1 \ models \ research \ object_detection \ inputs.py”,   第515行,在transform_and_pad_input_data_fn中           tensor_dict = transform_data_fn(tensor_dict),         文件“ F:\ cindy \ cindybackup \ tensorflow1 \ models \ research \ object_detection \ inputs.py”,   第129行,位于transform_input_data中           tf.expand_dims(tf.to_float(image),axis = 0))         文件“ F:\ cindy \ cindybackup \ tensorflow1 \ models \ research \ object_detection \ meta_architectures \ faster_rcnn_meta_arch.py​​”,   543行,在预处理中           parallel_iterations = self._parallel_iterations)         文件“ F:\ cindy \ cindybackup \ tensorflow1 \ models \ research \ object_detection \ utils \ shape_utils.py”,   第237行,在static_or_dynamic_map_fn中           输出= [tf.unstack(elems)中arg的fn(arg)]         文件“ F:\ cindy \ cindybackup \ tensorflow1 \ models \ research \ object_detection \ utils \ shape_utils.py”,   237行           输出= [tf.unstack(elems)中arg的fn(arg)]         文件“ F:\ cindy \ cindybackup \ tensorflow1 \ models \ research \ object_detection \ core \ preprocessor.py”,   第2264行,在resize_to_range中           lambda:_resize_portrait_image(image))         文件“ C:\ Users \ wyh \ AppData \ Local \ conda \ conda \ envs \ py352 \ lib \ site-packages \ tensorflow \ python \ util \ deprecation.py”,   第432行,位于new_func中           return func(* args,** kwargs)         文件“ C:\ Users \ wyh \ AppData \ Local \ conda \ conda \ envs \ py352 \ lib \ site-packages \ tensorflow \ python \ ops \ control_flow_ops.py”,   2063行,在cond           orig_res_t,res_t = context_t.BuildCondBranch(true_fn)         文件“ C:\ Users \ wyh \ AppData \ Local \ conda \ conda \ envs \ py352 \ lib \ site-packages \ tensorflow \ python \ ops \ control_flow_ops.py”,   BuildCondBranch中的第1913行           original_result = fn()         文件“ F:\ cindy \ cindybackup \ tensorflow1 \ models \ research \ object_detection \ core \ preprocessor.py”,   2263行,在           lambda:_resize_landscape_image(image),         文件“ F:\ cindy \ cindybackup \ tensorflow1 \ models \ research \ object_detection \ core \ preprocessor.py”,   第2245行,位于_resize_landscape_image中           align_corners = align_corners,preserve_aspect_ratio = True)       TypeError:resize_images()获得了意外的关键字参数'preserve_aspect_ratio'

谢谢〜

1 个答案:

答案 0 :(得分:1)

该问题在tensorflow模型中尚未解决(https://github.com/tensorflow/models/

我刚刚删除了object_detection / core / preprocessor.py中的reserve_aspect_ratio

align_corners=align_corners, preserve_aspect_ratio=True)
align_corners=align_corners)