numpy数组包含如下所示的预测概率:
predict_prob1 =([[0.95602106, 0.04397894],
[0.93332366, 0.06667634],
[0.97311459, 0.02688541],
[0.97323962, 0.02676038]])
predict_prob2 =([[0.70425144, 0.29574856],
[0.69751251, 0.30248749],
[0.7072872 , 0.2927128 ],
[0.68683139, 0.31316861]])
predict_prob3 =([[0.56551921, 0.43448079],
[0.93321106, 0.06678894],
[0.92345399, 0.07654601],
[0.88396842, 0.11603158]])
我想按元素比较这三个numpy.ndarray,并找出哪个数组具有最大的概率。三个数组的长度相同。我试图实现这种错误的方法。
for i in range(len(predict_prob1)):
if(predict_prob1[i] > predict_prob2[i])
c = predict_prob1[i]
else
c = predict_prob2[i]
if(c > predict_prob3[i])
result = c
else
result = array[i]
请帮助!
答案 0 :(得分:3)
您可以使用np.maximum.reduce
:
np.maximum.reduce([A, B, C])
其中A
,B
,C
是numpy.ndarray
对于您的示例,结果为:
[[0.95602106 0.43448079]
[0.93332366 0.30248749]
[0.97311459 0.2927128 ]
[0.97323962 0.31316861]]
答案 1 :(得分:2)
对我来说,您要问的不是很清楚— 如果您想要的结果是一个4x2数组,该数组索引了三个数组中哪个数组在位置i,j
中具有最大值您要使用np.argmax
>>> import numpy as np
>>> predict_prob1 =([[0.95602106, 0.04397894],
[0.93332366, 0.06667634],
[0.97311459, 0.02688541],
[0.97323962, 0.02676038]])
>>> predict_prob2 =([[0.70425144, 0.29574856],
[0.69751251, 0.30248749],
[0.7072872 , 0.2927128 ],
[0.68683139, 0.31316861]])
>>> predict_prob3 =([[0.56551921, 0.43448079],
[0.93321106, 0.06678894],
[0.92345399, 0.07654601],
[0.88396842, 0.11603158]])
>>> np.argmax((predict_prob1,predict_prob2,predict_prob3), 0)
array([[0, 2],
[0, 1],
[0, 1],
[0, 1]])
>>>
附录
已阅读a comment of the OP,我在回答中添加了以下内容
>>> names = np.array(['predict_prob%d'%(i+1) for i in range(3)])
>>> names[np.argmax((predict_prob1,predict_prob2,predict_prob3),0)]
array([['predict_prob1', 'predict_prob3'],
['predict_prob1', 'predict_prob2'],
['predict_prob1', 'predict_prob2'],
['predict_prob1', 'predict_prob2']], dtype='<U13')
>>>
答案 2 :(得分:1)
假设您要为每一行分配类别0概率最高的数组索引:
which = 0
np.stack([predict_prob1, predict_prob2, predict_prob3], axis=2)[:, which, :].argmax(axis=1)
输出:
array([0, 0, 0, 0])
对于第1类:
array([2, 1, 1, 1])
答案 3 :(得分:0)
您可以使用操作数>和<产生数组的布尔掩码的事实。
import numpy as np
predict_prob1 =np.array([[0.95602106, 0.04397894],
[0.93332366, 0.06667634],
[0.97311459, 0.02688541],
[0.97323962, 0.02676038]])
predict_prob2 =np.array([[0.70425144, 0.29574856],
[0.69751251, 0.30248749],
[0.7072872 , 0.2927128 ],
[0.68683139, 0.31316861]])
predict_prob3 =np.array([[0.56551921, 0.43448079],
[0.93321106, 0.06678894],
[0.92345399, 0.07654601],
[0.88396842, 0.11603158]])
predict_prob = (predict_prob1>predict_prob2)*predict_prob1 + (predict_prob1<predict_prob2)*predict_prob2
predict_prob = (predict_prob>predict_prob3)*predict_prob + (predict_prob<predict_prob3)*predict_prob3
print(predict_prob)
结果是:
[[0.95602106 0.43448079]
[0.93332366 0.30248749]
[0.97311459 0.2927128 ]
[0.97323962 0.31316861]]