将Spark结构流数据框架转换为Pandas数据框架

时间:2019-03-05 17:28:57

标签: python pandas apache-spark pyspark spark-structured-streaming

我有一个设置自Kafka主题的Spark Streaming App,我需要使用一些Pandas Dataframe的API,但是当我尝试对其进行转换时,却得到了

: org.apache.spark.sql.AnalysisException: Queries with streaming sources must be executed with writeStream.start();;
kafka
        at org.apache.spark.sql.catalyst.analysis.UnsupportedOperationChecker$.org$apache$spark$sql$catalyst$analysis$UnsupportedOperationChecker$$throwError(UnsupportedOperationChecker.scala:297)
        at org.apache.spark.sql.catalyst.analysis.UnsupportedOperationChecker$$anonfun$checkForBatch$1.apply(UnsupportedOperationChecker.scala:36)
        at org.apache.spark.sql.catalyst.analysis.UnsupportedOperationChecker$$anonfun$checkForBatch$1.apply(UnsupportedOperationChecker.scala:34)
        at org.apache.spark.sql.catalyst.trees.TreeNode.foreachUp(TreeNode.scala:127)
        at org.apache.spark.sql.catalyst.analysis.UnsupportedOperationChecker$.checkForBatch(UnsupportedOperationChecker.scala:34)
        at org.apache.spark.sql.execution.QueryExecution.assertSupported(QueryExecution.scala:63)
        at org.apache.spark.sql.execution.QueryExecution.withCachedData$lzycompute(QueryExecution.scala:74)
        at org.apache.spark.sql.execution.QueryExecution.withCachedData(QueryExecution.scala:72)
        at org.apache.spark.sql.execution.QueryExecution.optimizedPlan$lzycompute(QueryExecution.scala:78)
        at org.apache.spark.sql.execution.QueryExecution.optimizedPlan(QueryExecution.scala:78)
        at org.apache.spark.sql.execution.QueryExecution.completeString(QueryExecution.scala:219)
        at org.apache.spark.sql.execution.QueryExecution.toString(QueryExecution.scala:202)
        at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:62)
        at org.apache.spark.sql.Dataset.withNewExecutionId(Dataset.scala:2832)
        at org.apache.spark.sql.Dataset.collectToPython(Dataset.scala:2809)
        at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
        at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
        at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
        at java.lang.reflect.Method.invoke(Method.java:498)
        at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
        at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
        at py4j.Gateway.invoke(Gateway.java:282)
        at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
        at py4j.commands.CallCommand.execute(CallCommand.java:79)
        at py4j.GatewayConnection.run(GatewayConnection.java:238)
        at java.lang.Thread.run(Thread.java:745)

这是我的python代码

spark = SparkSession\
    .builder\
    .appName("sparkDf to pandasDf")\
    .getOrCreate()

sparkDf = spark.readStream\
    .format("kafka")\
    .option("kafka.bootstrap.servers", "kafkahost:9092")\
    .option("subscribe", "mytopic")\
    .option("startingOffsets", "earliest")\
    .load()


pandas_df =  sparkDf.toPandas()

query = sparkDf.writeStream\
    .outputMode("append")\
    .format("console")\
    .option("truncate", "false")\
    .trigger(processingTime="5 seconds")\
    .start()\
    .awaitTermination()

现在我知道我正在创建流数据帧的另一个实例,但是无论我在哪里尝试使用start()和awaitTermination(),我都会遇到相同的错误。

有什么想法吗?

1 个答案:

答案 0 :(得分:1)

TL; DR 这样的操作无法正常工作。

  

现在我知道我正在创建流数据帧的另一个实例

好吧,问题是您真的不知道。在toPandas上调用的DataFrame创建了一个简单的,本地的,未分布的熊猫DataFramein memory of the driver node

它不仅与Spark无关,而且由于抽象本质上与结构化流不兼容-熊猫DataFrame代表一组固定的元组,而结构化流则代表无限的元组流。

目前尚不清楚您要实现的目标,这可能是XY问题,但是如果您确实需要将熊猫与结构化流一起使用,则可以尝试使用pandas_udf-{{ 1}}和SCALAR变体至少与基于基本时间的触发器兼容(也可能支持其他变体,尽管某些组合显然没有任何意义,并且我不知道任何正式的兼容性列表)