我遇到一个“组合”问题,试图找到一组不同的键,为此我尝试寻找一种优化的解决方案:
我有列表“ l”的列表:
public List<EmployeeEntity> GetEmployeeList(EmployeeEntity employee)
{
ParameterContext paramList = new ParameterContext();
paramList.Add("@Param1", employee.EmployeeId);
}
每个ID都链接到另一个ID,但也可能通过另一个键链接到另一个键(请参见下图)。目标是以一种优化的方式找到属于同一集群的所有键。
想要的结果是:
l = [[1, 5],
[5, 7],
[4, 9],
[7, 9],
[50, 90],
[100, 200],
[90, 100],
[2, 90],
[7, 50],
[9, 21],
[5, 10],
[8, 17],
[11, 15],
[3, 11]]
我当前拥有的代码是:
[{1, 2, 4, 5, 7, 9, 10, 21, 50, 90, 100, 200}, {8, 17}, {3, 11, 15}]
我得到先前显示的结果。在200万条需要花很长时间才能运行的线路上使用它时,问题就来了。
还有其他方法可以以优化的方式解决此问题吗?
答案 0 :(得分:3)
您可以将其视为在图形中找到connected components的问题:
l = [[1, 5], [5, 7], [4, 9], [7, 9], [50, 90], [100, 200], [90, 100],
[2, 90], [7, 50], [9, 21], [5, 10], [8, 17], [11, 15], [3, 11]]
# Make graph-like dict
graph = {}
for i1, i2 in l:
graph.setdefault(i1, set()).add(i2)
graph.setdefault(i2, set()).add(i1)
# Find clusters
clusters = []
for start, ends in graph.items():
# If vertex is already in a cluster skip
if any(start in cluster for cluster in clusters):
continue
# Cluster set
cluster = {start}
# Process neighbors transitively
queue = list(ends)
while queue:
v = queue.pop()
# If vertex is new
if v not in cluster:
# Add it to cluster and put neighbors in queue
cluster.add(v)
queue.extend(graph[v])
# Save cluster
clusters.append(cluster)
print(*clusters)
# {1, 2, 100, 5, 4, 7, 200, 9, 10, 50, 21, 90} {8, 17} {3, 11, 15}
答案 1 :(得分:2)
这是union-find algorithm / disjoint set data structure的典型用例。 Python库AFAIK中没有实现,但是我总是倾向于在附近创建一个,因为它是如此有用...
l = [[1, 5], [5, 7], [4, 9], [7, 9], [50, 90], [100, 200], [90, 100],
[2, 90], [7, 50], [9, 21], [5, 10], [8, 17], [11, 15], [3, 11]]
from collections import defaultdict
leaders = defaultdict(lambda: None)
def find(x):
l = leaders[x]
if l is not None:
leaders[x] = find(l)
return leaders[x]
return x
# union all elements that transitively belong together
for a, b in l:
leaders[find(a)] = find(b)
# get groups of elements with the same leader
groups = defaultdict(set)
for x in leaders:
groups[find(x)].add(x)
print(*groups.values())
# {1, 2, 4, 5, 100, 7, 200, 9, 10, 50, 21, 90} {8, 17} {3, 11, 15}
n个节点的运行时复杂度应约为O(nlogn),每次都需要登录步骤才能到达(和更新)领导者。