在python中运行并行请求会话

时间:2019-02-25 23:45:53

标签: python multithreading pandas asynchronous python-requests

我正在尝试打开多个Web会话并将数据保存到CSV中,已经使用for循环和request.get选项编写了我的代码,但是访问90个Web位置需要花费很长时间。谁能让我知道loc_var的整个过程如何并行运行:

代码运行正常,只是问题在loc_var上一个接一个地运行,并且花费了很长时间。

要并行访问所有for循环loc_var URL并编写CSV操作

下面是代码:

import pandas as pd
import numpy as np
import os
import requests
import datetime
import zipfile
t=datetime.date.today()-datetime.timedelta(2)
server = [("A","web1",":5000","username=usr&password=p7Tdfr")]
'''List of all web_ips'''
web_1 = ["Web1","Web2","Web3","Web4","Web5","Web6","Web7","Web8","Web9","Web10","Web11","Web12","Web13","Web14","Web15"]
'''List of All location'''
loc_var =["post1","post2","post3","post4","post5","post6","post7","post8","post9","post10","post11","post12","post13","post14","post15","post16","post17","post18"]

for s,web,port,usr in server:
    login_url='http://'+web+port+'/api/v1/system/login/?'+usr
    print (login_url)
    s= requests.session()
    login_response = s.post(login_url)
    print("login Responce",login_response)
    #Start access the Web for Loc_variable
    for mkt in loc_var:
        #output is CSV File
        com_actions_url='http://'+web+port+'/api/v1/3E+date(%5C%22'+str(t)+'%5C%22)and+location+%3D%3D+%27'+mkt+'%27%22&page_size=-1&format=%22csv%22'
        print("com_action_url",com_actions_url)
        r = s.get(com_actions_url)
        print("action",r)
        if r.ok == True:            
            with open(os.path.join("/home/Reports_DC/", "relation_%s.csv"%mkt),'wb') as f:
                f.write(r.content)  

        # If loc is not aceesble try with another Web_1 List
        if r.ok == False:
            while r.ok == False:
                for web_2 in web_1:
                    login_url='http://'+web_2+port+'/api/v1/system/login/?'+usr
                    com_actions_url='http://'+web_2+port+'/api/v1/3E+date(%5C%22'+str(t)+'%5C%22)and+location+%3D%3D+%27'+mkt+'%27%22&page_size=-1&format=%22csv%22'
                    login_response = s.post(login_url)
                    print("login Responce",login_response)
                    print("com_action_url",com_actions_url)
                    r = s.get(com_actions_url)
                    if r.ok == True:            
                        with open(os.path.join("/home/Reports_DC/", "relation_%s.csv"%mkt),'wb') as f:
                            f.write(r.content)  
                        break

1 个答案:

答案 0 :(得分:0)

您可以采用多种方法来发出并发HTTP请求。我使用的两个是(1)具有concurrent.futures.ThreadPoolExecutor的多个线程,或者(2)使用asyncio/aiohttp异步发送请求。

要使用线程池并行发送请求,首先要生成要并行获取的URL列表(在本例中,生成login_urlscom_action_urls的列表) ,然后您可以同时请求所有URL,如下所示:

from concurrent.futures import ThreadPoolExecutor
import requests

def fetch(url):
    page = requests.get(url)
    return page.text
    # Catch HTTP errors/exceptions here

pool = ThreadPoolExecutor(max_workers=5)

urls = ['http://www.google.com', 'http://www.yahoo.com', 'http://www.bing.com']  # Create a list of urls

for page in pool.map(fetch, urls):
    # Do whatever you want with the results ...
    print(page[0:100])

使用asyncio / aiohttp通常比上面的线程方法要快,但是学习曲线更复杂。这是一个简单的示例(Python 3.7 +):

import asyncio
import aiohttp

urls = ['http://www.google.com', 'http://www.yahoo.com', 'http://www.bing.com']

async def fetch(session, url):
    async with session.get(url) as resp:
        return await resp.text()
        # Catch HTTP errors/exceptions here

async def fetch_concurrent(urls):
    loop = asyncio.get_event_loop()
    async with aiohttp.ClientSession() as session:
        tasks = []
        for u in urls:
            tasks.append(loop.create_task(fetch(session, u)))

        for result in asyncio.as_completed(tasks):
            page = await result
            #Do whatever you want with results
            print(page[0:100])

asyncio.run(fetch_concurrent(urls))

但是除非您将要发出大量请求,否则线程方法可能就足够了(并且更容易实现)。