我有这段代码已经完成了我打算做的事情,只是因为我正在使用for
循环,这与优化有些冲突,据我所知,这通常是个坏主意。
Nx=100
Ny=100
A=np.random.normal(0,scale=2,size=(Nx,Ny))
for x in range(0,Nx):
for y in range(0,Ny):
if (A[x,y]*A[x,y] < 1):
A[x,y]+=np.random.normal(0)*(1-A[x,y]**2)
问题是我不知道如何用python编写没有for
循环就可以执行相同操作的代码。
我没有找到答案,因为我只找到了集中于服从特定语句的数组所有术语的问题/答案。 就我而言,我有兴趣对遵循我的陈述的数组中每个位置添加不同的随机数。
答案 0 :(得分:2)
如果您可以生成一个以随机数开头的列表,可以按如下所示对代码进行矢量化处理
btnGenerate_DataComments_Click()
以下是用于较小测试用例的可行示例
Nx = 100
Ny = 100
A = np.random.normal(0, scale=2, size=(Nx, Ny))
# Create conditional mask
mask = A**2 < 1
# generate random numbers
randoms = np.random.normal(0, size=A[mask].shape)
# Modify the values where mask condition is fulfilled.
A[mask] += randoms * (1 - A[mask]**2)
答案 1 :(得分:2)
您可以像这样从Python使用import pandas as pd
feedback_data = pd.read_csv('output_svm.csv')
print(feedback_data)
data target
0 facilitates good student teacher communication. positive
1 lectures are very lengthy. negative
2 the teacher is very good at interaction. positive
3 good at clearing the concepts. positive
4 good at clearing the concepts. positive
5 good at teaching. positive
6 does not shows test copies. negative
7 good subjective knowledge. positive
8 good communication skills. positive
9 good teaching methods. positive
10 posseses very good and thorough knowledge of t... positive
feedback_data_test = pd.read_csv('classified_feedbacks_test.csv')
print(feedback_data_test)
data target
0 good teaching. NaN
1 punctuality. NaN
2 provides good practical examples. NaN
3 weak subject knowledge. NaN
4 excellent teacher. NaN
5 no strength. NaN
6 very poor communication skills. NaN
7 not able to clear the concepts. NaN
8 punctual. NaN
9 lack of proper guidance. NaN
10 fantastic speaker. NaN
from sklearn.feature_extraction.text import CountVectorizer
cv = CountVectorizer(binary = True)
ct = CountVectorizer(binary= True)
cv.fit(feedback_data['data'].values)
ct.fit(feedback_data_test['data'].values)
X = feedback_data['data'].apply(lambda X : cv.transform([X])).values
X = list([list(x.toarray()[0]) for x in X])
X_test = feedback_data_test['data'].apply(lambda X_test : ct.transform([X_test])).values
X_test = list([list(x.toarray()[0]) for x in X_test])
from sklearn import svm
from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split
target = [1 if i<72 else 0 for i in range(144)]
X_train, X_val, y_train, y_val = train_test_split(X, target, train_size = 0.50)
clf = svm.SVC(kernel = 'linear', gamma = 0.001, C = 0.05)
clf.fit(X, target)
#The below line gives error
print("Accuracy = %s" %accuracy_score(target,clf.predict([X_test])) )
:
np.where
这是数组的优势。我们可以高效,快速地应用算术计算。