我正在对虚拟数据帧train_final[categorical_var]
进行虚拟编码。但是,当我运行代码时,出现内存错误。因为dask应该通过逐块加载数据来做到这一点,所以会发生这种情况。
代码如下:
from dask_ml.preprocessing import DummyEncoder
de = DummyEncoder()
train_final_cat = de.fit_transform(train_final[categorical_var])
错误:
---------------------------------------------------------------------------
MemoryError Traceback (most recent call last)
<ipython-input-84-e21592c13279> in <module>
1 from dask_ml.preprocessing import DummyEncoder
2 de = DummyEncoder()
----> 3 train_final_cat = de.fit_transform(train_final[categorical_var])
~/env/lib/python3.5/site-packages/sklearn/base.py in fit_transform(self, X, y, **fit_params)
460 if y is None:
461 # fit method of arity 1 (unsupervised transformation)
--> 462 return self.fit(X, **fit_params).transform(X)
463 else:
464 # fit method of arity 2 (supervised transformation)
~/env/lib/python3.5/site-packages/dask_ml/preprocessing/data.py in fit(self, X, y)
602
603 self.transformed_columns_ = pd.get_dummies(
--> 604 sample, drop_first=self.drop_first
605 ).columns
606 return self
~/env/lib/python3.5/site-packages/pandas/core/reshape/reshape.py in get_dummies(data, prefix, prefix_sep, dummy_na, columns, sparse, drop_first, dtype)
890 dummy = _get_dummies_1d(col[1], prefix=pre, prefix_sep=sep,
891 dummy_na=dummy_na, sparse=sparse,
--> 892 drop_first=drop_first, dtype=dtype)
893 with_dummies.append(dummy)
894 result = concat(with_dummies, axis=1)
~/env/lib/python3.5/site-packages/pandas/core/reshape/reshape.py in _get_dummies_1d(data, prefix, prefix_sep, dummy_na, sparse, drop_first, dtype)
978
979 else:
--> 980 dummy_mat = np.eye(number_of_cols, dtype=dtype).take(codes, axis=0)
981
982 if not dummy_na:
~/env/lib/python3.5/site-packages/numpy/lib/twodim_base.py in eye(N, M, k, dtype, order)
184 if M is None:
185 M = N
--> 186 m = zeros((N, M), dtype=dtype, order=order)
187 if k >= M:
188 return m
MemoryError:
任何人都可以在这方面给我一些指导
谢谢
迈克尔
答案 0 :(得分:1)
编码虚拟变量是一项非常占用内存的任务,因为您正在为categorical_column的每个唯一值创建一个新列。如果categorical_column是高基数,那么即使单个块也可能爆炸。同样,创建假人也不是“令人尴尬的平行”。因此工作人员不能只是独立地处理每个块。在计算过程中,工作人员需要交流和复制一些数据。