import pandas as pd
feedback_data = pd.read_csv('output.csv')
print(feedback_data)
data target
0 facilitates good student teacher communication. positive
1 lectures are very lengthy. negative
2 the teacher is very good at interaction. positive
3 good at clearing the concepts. positive
4 good at clearing the concepts. positive
5 good at teaching. positive
6 does not shows test copies. negative
7 good subjective knowledge. positive
from sklearn.feature_extraction.text import CountVectorizer
cv = CountVectorizer(binary = True)
cv.fit(feedback_data)
X = cv.transform(feedback_data)
X_test = cv.transform(feedback_data_test)
from sklearn import svm
from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split
target = [1 if i<72 else 0 for i in range(144)]
# the below line gives error
X_train, X_val, y_train, y_val = train_test_split(X, target, train_size = 0.50)
我不明白问题是什么。请帮忙。
答案 0 :(得分:1)
您没有正确使用计数矢量化器。这就是您现在拥有的:
<html>
<head>
<script>
function showTags(){
var text = document.getElementById("text").value;
var result = text.split(' ').filter(v=> v.startsWith('#'));
document.getElementById("result").innerHTML = result;
}
</script>
</head>
<body>
<h1>Enter text or paragraph</h1>
<textarea type="text" id="text"></textarea><br>
<button onclick="showTags()">Get Hashtags</button><br><br>
<div id="result"></div>
</body>
所以您看到自己没有达到想要的目标。您没有正确变换每一行。您甚至没有正确地训练计数矢量化器,因为您使用了整个DataFrame而不只是注释的语料库。 要解决此问题,我们需要确保计数工作良好: 如果您这样做(使用正确的语料库):
from sklearn.feature_extraction.text import CountVectorizer
cv = CountVectorizer(binary = True)
cv.fit(df)
X = cv.transform(df)
X
<2x2 sparse matrix of type '<class 'numpy.int64'>'
with 2 stored elements in Compressed Sparse Row format>
您看到我们正在接近我们想要的。我们只需要对它进行正确的转换(转换每一行):
cv = CountVectorizer(binary = True)
cv.fit(df['data'].values)
X = cv.transform(df)
X
<2x23 sparse matrix of type '<class 'numpy.int64'>'
with 0 stored elements in Compressed Sparse Row format>
我们有一个更合适的X!现在我们只需要检查是否可以拆分:
cv = CountVectorizer(binary = True)
cv.fit(df['data'].values)
X = df['data'].apply(lambda x: cv.transform([x])).values
X
array([<1x23 sparse matrix of type '<class 'numpy.int64'>'
with 5 stored elements in Compressed Sparse Row format>,
...
<1x23 sparse matrix of type '<class 'numpy.int64'>'
with 3 stored elements in Compressed Sparse Row format>], dtype=object)
它有效!
您需要确保您了解CountVectorizer为正确使用它所做的事情