我正在尝试根据包含50,000+个温度的文本文件计算x个随机温度的标准偏差。
我有一个数组,其中包含应该加载到的每个索引的样本大小。例如,将8个随机温度归为索引0,将16个随机温度归为索引1,等等。
我已经成功计算出样本均值,但是在方差/标准差方面却遇到了麻烦。
posts = await Post.find({_group: { "$in" : exampleArray } })
输出:
每个样本大小的样本标准偏差应约为20。
答案 0 :(得分:0)
(算术)平均值的定义(例如,https://en.wikipedia.org/wiki/Mean)为:
以及标准偏差(例如,参见https://en.wikipedia.org/wiki/Standard_deviation):
在下面的代码中,第一步中计算出平均值,第二步中计算出标准差:
private static void calcEstimates() {
int sampleSize;
double sum;
double mean;
double sumSqrDev;
double stdDev;
System.out.println("size mean stdDev");
System.out.println("------------------------");
for (int i = 0; i < sampleSizes.length; i++) {
sum = 0;
sampleSize = sampleSizes[i];
// 1. Step: Calculation of the mean
double[] temps = new double[sampleSize]; // N
for (int j = 0; j < sampleSize; j++) {
temps[j] = allTemps[rng.nextInt(numTemps)];
sum += temps[j];
}
mean = sum / sampleSize;
// 2. Step: Calculation of the standard deviation
sumSqrDev = 0;
for (int j = 0; j < sampleSize; j++) {
sumSqrDev += Math.pow((temps[j] - mean), 2);
}
stdDev = Math.sqrt(sumSqrDev / (sampleSize - 1));
System.out.printf("%5d %.4f %.4f\n", sampleSize, mean, stdDev);
}
}
在以下示例中,温度均匀分布,其值介于a = 450
和b = 550
之间:
private static int[] sampleSizes = new int[] {8,16,32,64,128,140,160,200,240,280,320,360,400,20000};
private static Random rng = new Random();
private static int numTemps = 20000;
private static double[] allTemps = new double[numTemps];
private static double meanTemperature = 500;
private static double deviation = 100;
private static void initTemperatures() {
for (int i = 0; i < numTemps; i++) {
allTemps[i] = meanTemperature + deviation * (rng.nextDouble() - 0.5);
}
}
public static void main(String[] args) {
initTemperatures();
calcEstimates();
}
因此,理论的平均值为
和理论标准偏差为
(请参见https://en.wikipedia.org/wiki/Uniform_distribution_(continuous)和https://stats.stackexchange.com/questions/35123/whats-the-difference-between-variance-and-standard-deviation)与代码结果完全一致:
size mean stdDev
------------------------
8 504.8617 32.1182
16 503.5508 31.2777
32 503.1226 28.3134
64 504.2420 28.2647
128 499.5431 27.3515
140 504.0203 26.6482
160 501.0673 28.7222
200 498.4244 28.5140
240 500.7214 28.6428
280 497.3849 28.3684
320 499.5752 28.8653
360 500.6975 29.1524
400 500.5515 29.9879
20000 499.7810 28.9035