print(news['title'][5])
7.5级地震袭击了秘鲁-厄瓜多尔边境地区-印度教
print(analyser.polarity_scores(news['title'][5]))
{'neg':0.0,'neu':1.0,'pos':0.0,'compound':0.0}
from nltk.tokenize import word_tokenize, RegexpTokenizer
import pandas as pd
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
analyzer = SentimentIntensityAnalyzer()
sentence = news['title'][5]
tokenized_sentence = nltk.word_tokenize(sentence)
pos_word_list=[]
neu_word_list=[]
neg_word_list=[]
for word in tokenized_sentence:
if (analyzer.polarity_scores(word)['compound']) >= 0.1:
pos_word_list.append(word)
elif (analyzer.polarity_scores(word)['compound']) <= -0.1:
neg_word_list.append(word)
else:
neu_word_list.append(word)
print('Positive:',pos_word_list)
print('Neutral:',neu_word_list)
print('Negative:',neg_word_list)
score = analyzer.polarity_scores(sentence)
print('\nScores:', score)
正面:[] 中立:[“幅值”,“ 7.5”,“地震”,“命中”,“秘鲁-厄瓜多尔”,“边界”,“区域”,“-”,“ The”,“印度”] 负数:[]
得分:{'neg':0.0,'neu':1.0,'pos':0.0,'compound':0.0}
new_words = {
'Peru-Ecuador': -2.0,
'quake': -3.4,
}
analyser.lexicon.update(new_words)
print(analyzer.polarity_scores(sentence))
{'neg':0.0,'neu':1.0,'pos':0.0,'compound':0.0}
from nltk.tokenize import word_tokenize, RegexpTokenizer
import pandas as pd
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
analyzer = SentimentIntensityAnalyzer()
sentence = news['title'][5]
tokenized_sentence = nltk.word_tokenize(sentence)
pos_word_list=[]
neu_word_list=[]
neg_word_list=[]
for word in tokenized_sentence:
if (analyzer.polarity_scores(word)['compound']) >= 0.1:
pos_word_list.append(word)
elif (analyzer.polarity_scores(word)['compound']) <= -0.1:
neg_word_list.append(word)
else:
neu_word_list.append(word)
print('Positive:',pos_word_list)
print('Neutral:',neu_word_list)
print('Negative:',neg_word_list)
score = analyzer.polarity_scores(sentence)
print('\nScores:', score)
正面:[] 中立:[“幅值”,“ 7.5”,“地震”,“命中”,“秘鲁-厄瓜多尔”,“边界”,“区域”,“-”,“ The”,“印度”] 负数:[]
得分:{'neg':0.0,'neu':1.0,'pos':0.0,'compound':0.0}
答案 0 :(得分:0)
您使用的代码绝对正确。更新字典时,您使用的是analyser
而不是analyzer
(不确定为什么没有错误)。
new_words = {
'Peru-Ecuador': -2.0,
'quake': -3.4,
}
analyzer.lexicon.update(new_words)
print(analyzer.polarity_scores(sentence))
输出:
{'neg': 0.355, 'neu': 0.645, 'pos': 0.0, 'compound': -0.6597}
更多警告(不确定您是否犯了此错误。) 您不应该再次导入库。因为您更新的单词将消失。 步骤应为: