是否可以锁定全局环境,并且仍然允许设置或删除.Random.seed
? lockEnvironment()
的默认行为过于激进
我的用例。
lockEnvironment(globalenv())
rnorm(10)
#> Error in rnorm(10) : cannot add bindings to a locked environment
rm(.Random.seed)
#> Error in rm(.Random.seed) :
#> cannot remove bindings from a locked environment
drake
版本7.0.0将具有保护可重复性的新保护措施。
plan <- drake_plan(
x = {
data(mtcars)
mtcars$mpg
},
y = mean(x)
)
plan
#> # A tibble: 2 x 2
#> target command
#> <chr> <expr>
#> 1 x { data(mtcars) mtcars$mpg }
#> 2 y mean(x)
make(plan)
#> target x
#> fail x
#> Error: Target `x` failed. Call `diagnose(x)` for details. Error message:
#> cannot add bindings to a locked environment.
#> One of your targets tried to modify your environment,
#> which could invalidate other targets
#> and undermine reproducibility (example:
#> https://github.com/ropensci/drake/issues/664#issuecomment-453163562).
#> Beware <<-, ->>, attach(), data(), and side effects in general.
#> Use make(lock_envir = FALSE) to avoid this error (not recommended).
错误来自对data(mtcars)
的调用。建立x
的行为将改变x
的依赖性。没有护栏,工作流会使自己失效。
make(plan, lock_envir = FALSE)
#> target x
#> target y
make(plan, lock_envir = FALSE)
#> target x
但是在使用护栏的情况下,我们遇到了https://github.com/ropensci/drake/issues/749和https://github.com/ropensci/drake/issues/675#issuecomment-458222414这样的极端情况。