给出一个数据框
+----+-------+------+-----------+-----------+---------------+
| | Key | ID | Status1 | Status2 | OrderID |
|----+-------+------+-----------+-----------+---------------|
| 0 | 1 | A1 | False | True | 1234-USF-0025 |
| 1 | 1 | A1 | False | True | 1234-USF-0026 |
| 2 | 1 | A1 | False | True | 1234-USF-0027 |
| 3 | 2 | A1 | True | True | 1234-USF-0025 |
| 4 | 2 | A1 | True | True | 1234-USF-0026 |
| 5 | 2 | A1 | True | True | 1234-USF-0027 |
| 6 | 3 | A1 | Anything | True | 1234-USF-0025 |
| 7 | 3 | A1 | False | True | 1234-USF-0026 |
| 8 | 3 | A1 | False | Anything | 1234-USF-0027 |
| 9 | 4 | A2 | True | True | 1234-USF-0028 |
| 10 | 4 | A2 | True | True | 1234-USF-0029 |
| 11 | 4 | A2 | True | True | 1234-USF-0030 |
| 12 | 5 | A3 | True | True | 1234-USF-0031 |
| 13 | 5 | A3 | True | True | 1234-USF-0032 |
| 14 | 5 | A3 | True | True | 1234-USF-0033 |
| 15 | 6 | A4 | True | True | 1234-USF-0034 |
| 16 | 6 | A4 | True | True | 1234-USF-0035 |
| 17 | 6 | A4 | True | True | 1234-USF-0036 |
+----+-------+------+-----------+-----------+---------------+
如何转换以列出每个OrderID
的每个ID
并基于每个Key
连接Status
。如果两个Stautses
都为True,则串联的Keys
应该放在TRUE
列中。如果其中一个是Flase
,则Keys
应该放在FALSE
列中。如果Status
中的一个(或两个)都不是True
或False
,则Key(s)
会串联在Other
列中。
所需结果df
Order ID ID TRUE FALSE OTHER
1234-USF-0025 A1 2 1 3
1234-USF-0026 A1 2 1,3
1234-USF-0027 A1 2 1 3
1234-USF-0028 A2 4
1234-USF-0029 A2 4
1234-USF-0030 A2 4
1234-USF-0031 A3 5
1234-USF-0032 A3 5
1234-USF-0033 A3 5
1234-USF-0034 A4 6
1234-USF-0035 A4 6
1234-USF-0036 A4 6
我尝试过的事情
df = df.groupby(['OrderID','ID'])['Key'].apply(','.join).reset_index()
+----+---------------+------+-------+
| | OrderID | ID | Key |
|----+---------------+------+-------|
| 0 | 1234-USF-0025 | A1 | 1,2,3 |
| 1 | 1234-USF-0026 | A1 | 1,2,3 |
| 2 | 1234-USF-0027 | A1 | 1,2,3 |
| 3 | 1234-USF-0028 | A2 | 4 |
| 4 | 1234-USF-0029 | A2 | 4 |
| 5 | 1234-USF-0030 | A2 | 4 |
| 6 | 1234-USF-0031 | A3 | 5 |
| 7 | 1234-USF-0032 | A3 | 5 |
| 8 | 1234-USF-0033 | A3 | 5 |
| 9 | 1234-USF-0034 | A4 | 6 |
| 10 | 1234-USF-0035 | A4 | 6 |
| 11 | 1234-USF-0036 | A4 | 6 |
+----+---------------+------+-------+
上面的内容肯定会让我接近,但是我不确定如何将Keys
分成各自的列(TRUE
,FALSE
和OTHER
)< / p>
注释
我以前将Key
列转换为字符串
Order IDs
可以与IDs
复制,但具有不同的Keys
答案 0 :(得分:1)
这是一个可行的解决方案,但是绝对有一种更快,更清洁的方式来实现。首先,为您的布尔逻辑添加一列,然后执行您的groupby
来压缩表,然后遍历并填充True
,False
和Other
列使用Key
和Result
列。最后,我删除了不需要的列并汇总了行。
import pandas as pd
import numpy as np
# Your dataframe for testing purposes
df = pd.DataFrame({'Key': '1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6'.split(),
'ID': 'A1 A1 A1 A1 A1 A1 A1 A1 A1 A2 A2 A2 A3 A3 A3 A4 A4 A4'.split(),
'Status1': 'False False False True True True Anything False False True True True True True True True True True'.split(),
'Status2': 'True True True True True True True True Anything True True True True True True True True True'.split(),
'OrderID': '25 26 27 25 26 27 25 26 27 28 29 30 31 32 33 34 35 36'.split()})
# First we need to do this boolean logic
df["Result"] = ""
for index, row in df.iterrows():
stat1 = row["Status1"]
stat2 = row["Status2"]
if stat1 == "True" and stat2 == "True":
row["Result"] = "True"
elif stat1 == "False" and stat2 == "False" or stat1 == "True" and stat2 == "False" or stat1 == "False" and stat2 == "True":
row["Result"] = "False"
else:
row["Result"] = "Other"
# Now we do your group by
df = df.groupby(['OrderID','ID', 'Result'])['Key'].apply(','.join).reset_index()
# Now we populate the columns you wanted populated
df["True"] = ""
df["False"] = ""
df["Other"] = ""
for index, row in df.iterrows():
if row[row["Result"]]:
row[row["Result"]] += "," + row["Key"]
else:
row[row["Result"]] += row["Key"]
del df['Result']
del df['Key']
# Final we aggregate the rows to flatten it.
df = df.groupby(['OrderID','ID'], as_index=False).agg(lambda x: "%s" % ''.join(x))