我正在根据那里的ID比较两个数据帧,然后使用以下代码合并它们:
df = df1.merge(df2, on=id, suffixes=('_x','_y'))
df1
name age id salary
0 Smith 30 2 2000
1 Ron 24 3 30000
2 Mike 35 4 40000
3 Jack 21 5 5000
4 Roshan 20 6 60000
5 Steve 45 8 8000
6 Peter 28 1 1000
df2
name age salary id
0 Peter 32 10000 1
1 Smith 30 1500 2
2 Ron 24 7000 3
3 Mike 35 20000 4
4 Jack 21 5000 5
5 Cathy 20 9000 6
6 Steve 45 56000 8
o / p
name_x age_x id salary_x name_y age_y salary_y
0 Smith 30 2 2000 Smith 30 1500
1 Ron 24 3 30000 Ron 24 7000
2 Mike 35 4 40000 Mike 35 20000
3 Jack 21 5 5000 Jack 21 5000
4 Roshan 20 6 60000 Cathy 20 9000
5 Steve 45 8 8000 Steve 45 56000
6 Peter 28 1 1000 Peter 32 10000
现在基于输出,我正在比较_x和_y列值并将其放入掩码:
mask = df[cols + '_x'].values == df[cols + '_y'].values
print(mask)
面具o / p
[[ True True False]
[ True True False]
[ True True False]
[ True True True]
[ True False False]
[ True True False]
[False True False]]
基于此掩码值,我想提出条件,如果在mask [1]中出现false,它应该给我累积值'No MAtch',我可以将其附加到输出结果中,例如:
name_x age_x id salary_x name_y age_y salary_y new_column
0 Smith 30 2 2000 Smith 30 1500 No Match
1 Ron 24 3 30000 Ron 24 7000 No Match
2 Mike 35 4 40000 Mike 35 20000 No Match
3 Jack 21 5 5000 Jack 21 5000 MAtch
4 Roshan 20 6 60000 Cathy 20 9000 No Match
5 Steve 45 8 8000 Steve 45 56000 No Match
6 Peter 28 1 1000 Peter 32 10000 No Match
答案 0 :(得分:2)
matches = ['Match' if x else 'No Match' for x in np.all(mask, axis = -1)]
将为您提供'Match'
和'No Match'
值的数组,您可以使用以下方法将其添加到数据框中:
df['newColumnName'] = matches
答案 1 :(得分:2)
将numpy.where
与numpy.all
结合使用以实现快速矢量化解决方案:
mask = df[cols + '_x'].values == df[cols + '_y'].values
df['new_column'] = np.where(np.all(mask, axis=1) , 'Match','No Match')
print (df)
name_x age_x id salary_x name_y age_y salary_y new_column
0 Smith 30 2 2000 Smith 30 1500 No Match
1 Ron 24 3 30000 Ron 24 7000 No Match
2 Mike 35 4 40000 Mike 35 20000 No Match
3 Jack 21 5 5000 Jack 21 5000 Match
4 Roshan 20 6 60000 Cathy 20 9000 No Match
5 Steve 45 8 8000 Steve 45 56000 No Match
6 Peter 28 1 1000 Peter 32 10000 No Match
感谢@markuscosinus的评论,如果需要通过索引通过掩码'column'
的第二mask[:, 1]
进行比较-这里是df['new_column'] = np.where(mask[:, 1] , 'Match','No Match')
:
var arr = [{"a":"A","b":"B","c":"C"},{"a":1,"b":2,"c":3},{"a":1,"b":"B","c":"C"}];
var res = arr.filter(obj => obj.a === 1);
console.log(res);
答案 2 :(得分:0)
将掩码转换为numpy数组或数据框,或者它应该已经是以下格式:
mask = pd.DataFrame([[ True, True, False],
[ True, True, False],
[ True, True, False],
[ True, True, True],
[ True, False, False],
[ True, True, False],
[False, True, False]])
然后下面的代码为您提供所需的列:
mask.apply(sum, axis=1).apply(lambda x: 'Match' if x==3 else 'No Match')
您可以将此列添加到df
。
希望对您有帮助...:)